Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Usage

For using the COCO dataset (2017), you need to download it manually first:

wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip

Then to load the dataset:

import datasets

COCO_DIR = ...(path to the downloaded dataset directory)...
ds = datasets.load_dataset(
    "yonigozlan/coco_detection_dataset_script",
    "2017",
    data_dir=COCO_DIR,
    trust_remote_code=True,
)

Benchmarking

Here is an example of how to benchmark a 🤗 Transformers object detection model on the validation data of the COCO dataset:

import datasets
import torch
from PIL import Image
from torch.utils.data import DataLoader
from torchmetrics.detection.mean_ap import MeanAveragePrecision
from tqdm import tqdm

from transformers import AutoImageProcessor, AutoModelForObjectDetection

# prepare data
COCO_DIR = ...(path to the downloaded dataset directory)...
ds = datasets.load_dataset(
    "yonigozlan/coco_detection_dataset_script",
    "2017",
    data_dir=COCO_DIR,
    trust_remote_code=True,
)
val_data = ds["validation"]
categories = val_data.features["objects"]["category_id"].feature.names
id2label = {index: x for index, x in enumerate(categories, start=0)}
label2id = {v: k for k, v in id2label.items()}
checkpoint = "facebook/detr-resnet-50"

# load model and processor
model = AutoModelForObjectDetection.from_pretrained(
    checkpoint, torch_dtype=torch.float16
).to("cuda")
id2label_model = model.config.id2label
processor = AutoImageProcessor.from_pretrained(checkpoint)


def collate_fn(batch):
    data = {}
    images = [Image.open(x["image_path"]).convert("RGB") for x in batch]
    data["images"] = images
    annotations = []
    for x in batch:
        boxes = x["objects"]["bbox"]
        # convert to xyxy format
        boxes = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in boxes]
        labels = x["objects"]["category_id"]
        boxes = torch.tensor(boxes)
        labels = torch.tensor(labels)
        annotations.append({"boxes": boxes, "labels": labels})
    data["original_size"] = [(x["height"], x["width"]) for x in batch]
    data["annotations"] = annotations
    return data


# prepare dataloader
dataloader = DataLoader(val_data, batch_size=8, collate_fn=collate_fn)

# prepare metric
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)

# evaluation loop
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
    inputs = (
        processor(batch["images"], return_tensors="pt").to("cuda").to(torch.float16)
    )
    with torch.no_grad():
        outputs = model(**inputs)
    target_sizes = torch.tensor([x for x in batch["original_size"]]).to("cuda")
    results = processor.post_process_object_detection(
        outputs, threshold=0.0, target_sizes=target_sizes
    )

    # convert predicted label id to dataset label id
    if len(id2label_model) != len(id2label):
        for result in results:
            result["labels"] = torch.tensor(
                [label2id.get(id2label_model[x.item()], 0) for x in result["labels"]]
            )
    # put results back to cpu
    for result in results:
        for k, v in result.items():
            if isinstance(v, torch.Tensor):
                result[k] = v.to("cpu")
    metric.update(results, batch["annotations"])

metrics = metric.compute()
print(metrics)
Downloads last month
49