Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code: FeaturesError Exception: ArrowInvalid Message: JSON parse error: Invalid value. in row 0 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 160, in _generate_tables df = pandas_read_json(f) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json return pd.read_json(path_or_buf, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 791, in read_json json_reader = JsonReader( File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 905, in __init__ self.data = self._preprocess_data(data) File "/src/services/worker/.venv/lib/python3.9/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data data = data.read() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 826, in read_with_retries out = read(*args, **kwargs) File "/usr/local/lib/python3.9/codecs.py", line 322, in decode (result, consumed) = self._buffer_decode(data, self.errors, final) UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 231, in compute_first_rows_from_streaming_response iterable_dataset = iterable_dataset._resolve_features() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2998, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1918, in _head return _examples_to_batch(list(self.take(n))) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2093, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1576, in __iter__ for key_example in islice(self.ex_iterable, self.n - ex_iterable_num_taken): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 279, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 163, in _generate_tables raise e File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 137, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Invalid value. in row 0
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
PhysReason: A Comprehensive Benchmark towards Physics-Based Reasoning
[[Project Page]](https://dxzxy12138.github.io/PhysReason) [📝Paper]
Currently we only open PhysReason-mini Benchmark
Overview
PhysReason is a comprehensive physics-based reasoning benchmark consisting of 1,200 physics problems spanning multiple domains, with a focus on both knowledge-based (25%) and reasoning-based (75%) questions.
- Dataset Size: 1,200 problems
- Problem Types: Mix of knowledge (25%) and reasoning (75%) questions
- Theorem Coverage: 147 physics theorems
- Visual Content: 81% problems include diagrams
- Difficulty Levels: Knowledge, Easy, Medium, Hard
Data Collection
Sources: Global college entrance exams and competitions
Process: Standardized using MinerU framework
Quality Control: Two-phase translation with expert verification
Filtering: Excluded easily searchable problems
Classification: Based on solving time and theorem complexity
Benchmark Comparison
Benchmark Multi-modal Size Knowledge Question Type Avg. T Step-by-step Avg. T Avg. S JEEBench ❌ 123 CEE OE,MC 169.7 - - - MMLU-Pro ❌ 1299 COL MC 52.1 - - - GPQA ❌ 227 PH.D. OE 111.4 ❌ 197.2 3.6 SciEval ❌ 1657 - OE,MC 154.5 - - - SciBench ✅ 295 COL OE 80.5 ❌ 315.9 2.8 MMMU ✅ 443 COL OE,MC 53.8 - - - ScienceQA ✅ 617 K1-K12 MC 13.3 ❌ 63.0 2.4 OlympiadBench ✅ 2334 COMP OE 222.0 ❌ 199.8 3.7 EMMA ✅ 156 - MC 109.5 - - - Ours-Knowledge ✅ 300 CEE+COMP OE 163.7 ✅ 196.5 3.3 Ours-Easy ✅ 300 CEE+COMP OE 171.2 ✅ 241.5 5.0 Ours-Medium ✅ 300 CEE+COMP OE 229.2 ✅ 391.3 8.4 Ours-Hard ✅ 300 CEE+COMP OE 340.9 ✅ 936.1 15.6 Ours-Full ✅ 1200 CEE+COMP OE 226.3 ✅ 441.3 8.1 Evaluation Framework
PSAS-A (Answer Level)
- Evaluates sub-question answers
- Uses LLM for answer extraction
- Verifies semantic consistency
- Weighted scoring based on solution steps
PSAS-S (Step Level)
- Four-phase assessment:
- Data extraction
- Scoring
- First error step detection
- Error analysis
Experimental Results
Non-O-like Models Performance
Model Input Knowledge Easy Medium Hard Avg. Qwen2VL-72B Q, I 41.92/62.47 24.04/45.26 15.97/36.13 4.83/24.23 16.96/42.88 InternVL2.5-78B Q, I 28.34/64.71 24.16/50.69 17.72/38.56 9.71/25.95 19.98/45.89 GPT-4o Q, I 50.71/65.82 33.87/51.98 22.73/42.36 11.03/24.71 29.58/47.23 Deepseek-V3-671B Q, IC 55.86/66.14 40.06/52.77 26.63/44.02 13.73/26.87 34.07/48.42 Claude-3.5-Sonnet Q, I 54.14/66.45 41.35/55.85 28.14/44.86 15.11/28.51 34.69/49.88 Gemini-2.0-Flash Q, I 65.08/75.04 54.84/68.60 39.79/55.67 21.99/38.39 45.20/60.40 Gemini-2.0-Pro Q, I 67.99/79.01 55.43/71.47 44.29/57.74 23.81/42.66 47.88/62.74 O-like Models Performance
Model Input Knowledge Easy Medium Hard Avg. o1-mini Q, IC 53.90/65.74 35.21/52.26 22.24/40.19 10.61/26.80 30.49/47.18 QvQ-72B Q, I 62.44/70.92 53.74/64.65 28.18/54.88 14.30/36.47 32.67/57.66 Gemini-2.0-T† Q, I 65.35/77.20 51.89/67.49 44.43/58.95 27.14/45.48 47.20/63.07 QwQ-32B Q, IC 62.03/76.28 54.92/71.08 43.64/62.14 22.99/42.19 45.89/63.87 GLM-Zero Q, IC 64.95/80.36 54.11/71.54 41.32/63.67 23.04/47.46 46.52/65.76 o3-mini-high Q, IC 70.67/83.61 67.20/81.95 45.31/64.57 30.12/47.23 53.32/69.34 Gemini-2.0-T* Q, I 73.44/84.15 63.17/75.94 50.41/66.60 31.90/48.47 54.73/69.73 Deepseek-R1 Q, IC 75.11/85.91 65.08/79.81 54.84/72.02 31.95/51.50 56.75/73.26 PhysReason-mini Results
Model K. E. M. H. Avg. o1-mini 54.80 30.33 15.41 7.92 27.11 QvQ-72B 51.17 37.10 29.83 22.13 35.06 QwQ-32B 64.40 50.07 38.88 27.45 45.20 Gemini-2.0-T† 71.47 49.97 36.83 22.97 45.42 GLM-Zero 72.70 50.17 43.42 24.70 47.75 o1 72.47 53.37 49.31 25.32 50.12 o3-mini-high 71.10 63.20 47.02 31.93 53.31 Gemini-2.0-T* 76.33 56.87 51.85 32.61 54.42 Deepseek-R1 85.17 60.77 47.24 33.23 56.60 Key Findings
- Strong performance from O-like models
- Gemini and Deepseek models show competitive results
- Detailed error analysis through PSAS-S framework
- Multi-modal capabilities enhance performance
- Step-by-step evaluation provides deeper insights
- Downloads last month
- 98