Safetensors
Serbian
mistral

image/jpeg

  • Developed by: datatab
  • License: mit

๐Ÿ† Results

Results obtained through the Serbian LLM Evaluation Benchmark

MODEL ARC-E ARC-C Hellaswag PiQA Winogrande BoolQ OpenbookQA OZ_EVAL SCORE
YugoGPT-Florida 0.6918 0.5766 0.4037 0.7374 0.5782 0.8685 0.5918 0.7407 64,85875
Yugo55A-GPT 0.5846 0.5185 0.3686 0.7076 0.5277 0.8584 0.5485 0.6883 60,0275
Yugo60-GPT 0.4948 0.4542 0.3342 0.6897 0.5138 0.8212 0.5155 0.6379 55,76625
Yugo45-GPT 0.4049 0.3900 0.2812 0.6055 0.4992 0.5793 0.4433 0.6111 47,68125

image/png

image/png

image/png

๐Ÿ‹๏ธ Training Stats

image/png

image/png

image/png

image/png

๐Ÿ’ป Usage

!pip -q install git+https://github.com/huggingface/transformers
from IPython.display import HTML, display

def set_css():
  display(HTML('''
  <style>
    pre {
        white-space: pre-wrap;
    }
  </style>
  '''))
get_ipython().events.register('pre_run_cell', set_css)
import torch
import transformers
from transformers import AutoTokenizer, MistralForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"

model = MistralForCausalLM.from_pretrained(
    "datatab/YugoGPT-Florida", 
    torch_dtype="auto"
).to(device)

tokenizer = AutoTokenizer.from_pretrained("datatab/YugoGPT-Florida")
from typing import Optional
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer


def generate(
    user_content: str, system_content: Optional[str] = ""
) -> str:
    system_content = """Ispod se nalazi uputstvo koje definiลกe zadatak, zajedno sa unosom koji pruลพa dodatni kontekst.
    Na osnovu ovih informacija, napiลกite odgovor koji precizno i taฤno ispunjava zahtev.
    """

    messages = [
        {
            "role": "system",
            "content": system_content,
        },
        {"role": "user", "content": user_content},
    ]

    tokenized_chat = tokenizer.apply_chat_template(
        messages, tokenize=True, add_generation_prompt=True, return_tensors="pt"
    ).to("cuda")

    text_streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
    output = model.generate(
        tokenized_chat,
        streamer=text_streamer,
        max_new_tokens=2048,
        temperature=0.1,
        repetition_penalty=1.11,
        top_p=0.92,
        top_k=1000,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        do_sample=True,
    )

    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
generate("Nabroj mi sve planete suncevog sistemai reci mi koja je najveca planeta?")
Sunฤev sistem sadrลพi osam planeta: Merkur, Venera, Zemlja, Mars, Jupiter, Saturn, Uran i Neptun. Najveฤ‡a planeta u Sunฤevom sistemu je Jupiter.

๐Ÿ’ก Contributions Welcome!

Have ideas, bug fixes, or want to add a custom model? We'd love for you to be part of the journey! Contributions help grow and enhance the capabilities of the YugoGPT-Florida.

๐Ÿ“œ Citation

Thanks for using YugoGPT-Florida โ€” where language learning models meet Serbian precision and creativity! Let's build smarter models together. ๐Ÿš€๏ฟฝ

If you find this model useful in your research, please cite it as follows:

@article{YugoGPT-Florida},
  title={YugoGPT-Florida},
  author={datatab},
  year={2024},
  url={https://huggingface.co/datatab/YugoGPT-Florida}
}
<
Downloads last month
11
Safetensors
Model size
7.24B params
Tensor type
FP16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for datatab/YugoGPT-Florida

Finetuned
(1)
this model

Datasets used to train datatab/YugoGPT-Florida

Collection including datatab/YugoGPT-Florida