fineweb-fra_latn-quality-transformer
This model is a fine-tuned version of EuroBERT/EuroBERT-210m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5184
- F1: 0.4882
- Accuracy: 0.6573
- Confusion Matrix: 3 10 7 1 94 12 1 30 20
- High Precision: 0.6
- High Recall: 0.15
- High F1: 0.24
- Low Precision: 0.7015
- Low Recall: 0.8785
- Low F1: 0.7801
- Medium Precision: 0.5128
- Medium Recall: 0.3922
- Medium F1: 0.4444
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Confusion Matrix | High Precision | High Recall | High F1 | Low Precision | Low Recall | Low F1 | Medium Precision | Medium Recall | Medium F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 5 | 1.4081 | 0.1518 | 0.2865 | 0 0 20 | |||||||||
5 0 102 | |||||||||||||||
0 0 51 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2948 | 1.0 | 0.4554 | ||||||
1.2754 | 2.0 | 10 | 1.0008 | 0.2503 | 0.6011 | 0 20 0 | |||||||||
0 107 0 | |||||||||||||||
0 51 0 | 0.0 | 0.0 | 0.0 | 0.6011 | 1.0 | 0.7509 | 0.0 | 0.0 | 0.0 | ||||||
1.2754 | 3.0 | 15 | 0.9946 | 0.3367 | 0.4775 | 0 2 18 | |||||||||
0 37 70 | |||||||||||||||
0 3 48 | 0.0 | 0.0 | 0.0 | 0.8810 | 0.3458 | 0.4966 | 0.3529 | 0.9412 | 0.5134 | ||||||
0.8128 | 4.0 | 20 | 0.7867 | 0.4046 | 0.6404 | 0 11 9 | |||||||||
0 93 14 | |||||||||||||||
0 30 21 | 0.0 | 0.0 | 0.0 | 0.6940 | 0.8692 | 0.7718 | 0.4773 | 0.4118 | 0.4421 | ||||||
0.8128 | 5.0 | 25 | 0.7778 | 0.4324 | 0.6348 | 0 4 16 | |||||||||
2 80 25 | |||||||||||||||
1 17 33 | 0.0 | 0.0 | 0.0 | 0.7921 | 0.7477 | 0.7692 | 0.4459 | 0.6471 | 0.528 | ||||||
0.5766 | 6.0 | 30 | 0.9369 | 0.4169 | 0.6292 | 0 5 15 | |||||||||
2 85 20 | |||||||||||||||
1 23 27 | 0.0 | 0.0 | 0.0 | 0.7522 | 0.7944 | 0.7727 | 0.4355 | 0.5294 | 0.4779 | ||||||
0.5766 | 7.0 | 35 | 0.8983 | 0.4443 | 0.6180 | 1 4 15 | |||||||||
1 78 28 | |||||||||||||||
2 18 31 | 0.25 | 0.05 | 0.0833 | 0.78 | 0.7290 | 0.7536 | 0.4189 | 0.6078 | 0.496 | ||||||
0.1777 | 8.0 | 40 | 1.5184 | 0.4882 | 0.6573 | 3 10 7 | |||||||||
1 94 12 | |||||||||||||||
1 30 20 | 0.6 | 0.15 | 0.24 | 0.7015 | 0.8785 | 0.7801 | 0.5128 | 0.3922 | 0.4444 | ||||||
0.1777 | 9.0 | 45 | 1.7748 | 0.4364 | 0.5955 | 2 7 11 | |||||||||
2 80 25 | |||||||||||||||
7 20 24 | 0.1818 | 0.1 | 0.1290 | 0.7477 | 0.7477 | 0.7477 | 0.4 | 0.4706 | 0.4324 | ||||||
0.013 | 10.0 | 50 | 2.1900 | 0.4190 | 0.6236 | 0 7 13 | |||||||||
3 83 21 | |||||||||||||||
2 21 28 | 0.0 | 0.0 | 0.0 | 0.7477 | 0.7757 | 0.7615 | 0.4516 | 0.5490 | 0.4956 | ||||||
0.013 | 11.0 | 55 | 2.6390 | 0.4348 | 0.6404 | 0 6 14 | |||||||||
1 81 25 | |||||||||||||||
1 17 33 | 0.0 | 0.0 | 0.0 | 0.7788 | 0.7570 | 0.7678 | 0.4583 | 0.6471 | 0.5366 | ||||||
0.0041 | 12.0 | 60 | 2.2662 | 0.4481 | 0.5955 | 4 9 7 | |||||||||
6 84 17 | |||||||||||||||
8 25 18 | 0.2222 | 0.2 | 0.2105 | 0.7119 | 0.7850 | 0.7467 | 0.4286 | 0.3529 | 0.3871 | ||||||
0.0041 | 13.0 | 65 | 3.0654 | 0.4064 | 0.5787 | 0 4 16 | |||||||||
0 64 43 | |||||||||||||||
3 9 39 | 0.0 | 0.0 | 0.0 | 0.8312 | 0.5981 | 0.6957 | 0.3980 | 0.7647 | 0.5235 | ||||||
0.0058 | 14.0 | 70 | 2.4618 | 0.4273 | 0.5899 | 3 9 8 | |||||||||
2 86 19 | |||||||||||||||
5 30 16 | 0.3 | 0.15 | 0.2 | 0.688 | 0.8037 | 0.7414 | 0.3721 | 0.3137 | 0.3404 | ||||||
0.0058 | 15.0 | 75 | 2.7654 | 0.4147 | 0.5506 | 1 3 16 | |||||||||
5 61 41 | |||||||||||||||
8 7 36 | 0.0714 | 0.05 | 0.0588 | 0.8592 | 0.5701 | 0.6854 | 0.3871 | 0.7059 | 0.5 | ||||||
0.0011 | 16.0 | 80 | 3.1337 | 0.3696 | 0.6180 | 0 15 5 | |||||||||
1 96 10 | |||||||||||||||
2 35 14 | 0.0 | 0.0 | 0.0 | 0.6575 | 0.8972 | 0.7589 | 0.4828 | 0.2745 | 0.35 | ||||||
0.0011 | 17.0 | 85 | 2.7265 | 0.4388 | 0.5618 | 4 3 13 | |||||||||
5 74 28 | |||||||||||||||
13 16 22 | 0.1818 | 0.2 | 0.1905 | 0.7957 | 0.6916 | 0.74 | 0.3492 | 0.4314 | 0.3860 | ||||||
0.0007 | 18.0 | 90 | 2.9583 | 0.4270 | 0.5843 | 1 3 16 | |||||||||
1 71 35 | |||||||||||||||
6 13 32 | 0.125 | 0.05 | 0.0714 | 0.8161 | 0.6636 | 0.7320 | 0.3855 | 0.6275 | 0.4776 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The HF Inference API does not support model that require custom code execution.
Model tree for davanstrien/fineweb-fra_latn-quality-transformer
Base model
EuroBERT/EuroBERT-210m