davanstrien's picture
davanstrien HF staff
Model save
c2fe384 verified
metadata
library_name: transformers
license: apache-2.0
base_model: EuroBERT/EuroBERT-210m
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: fineweb-swe_latn-quality-transformer
    results: []

fineweb-swe_latn-quality-transformer

This model is a fine-tuned version of EuroBERT/EuroBERT-210m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5507
  • F1: 0.7041
  • Accuracy: 0.7079
  • Confusion Matrix: 53 17 35 73
  • High Precision: 0.6023
  • High Recall: 0.7571
  • High F1: 0.6709
  • Low Precision: 0.8111
  • Low Recall: 0.6759
  • Low F1: 0.7374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Accuracy Confusion Matrix High Precision High Recall High F1 Low Precision Low Recall Low F1
No log 1.0 5 0.7080 0.4341 0.4719 19 51
43 65 0.3065 0.2714 0.2879 0.5603 0.6019 0.5804
0.8946 2.0 10 0.8359 0.3776 0.6067 0 70
0 108 0.0 0.0 0.0 0.6067 1.0 0.7552
0.8946 3.0 15 0.6091 0.6435 0.6461 50 20
43 65 0.5376 0.7143 0.6135 0.7647 0.6019 0.6736
0.6111 4.0 20 0.7509 0.3776 0.6067 0 70
0 108 0.0 0.0 0.0 0.6067 1.0 0.7552
0.6111 5.0 25 0.7014 0.4200 0.6180 3 67
1 107 0.75 0.0429 0.0811 0.6149 0.9907 0.7589
0.5827 6.0 30 0.5507 0.7041 0.7079 53 17
35 73 0.6023 0.7571 0.6709 0.8111 0.6759 0.7374
0.5827 7.0 35 0.5907 0.6963 0.6966 59 11
43 65 0.5784 0.8429 0.6860 0.8553 0.6019 0.7065
0.3865 8.0 40 0.6183 0.6468 0.7079 26 44
8 100 0.7647 0.3714 0.5 0.6944 0.9259 0.7937
0.3865 9.0 45 1.1120 0.5645 0.6685 16 54
5 103 0.7619 0.2286 0.3516 0.6561 0.9537 0.7774

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0