wav2vec2-xls-r-1b-E4-faroese-100h-30-epochs_20250208_v2
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1025
- Wer: 18.6544
- Cer: 3.9782
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.0062 | 0.4877 | 1000 | 0.7503 | 73.8424 | 22.8910 |
0.5172 | 0.9754 | 2000 | 0.2760 | 37.2164 | 9.8233 |
0.3955 | 1.4628 | 3000 | 0.2290 | 32.4580 | 8.5024 |
0.3725 | 1.9505 | 4000 | 0.2194 | 31.7972 | 8.2350 |
0.3008 | 2.4379 | 5000 | 0.2091 | 30.6340 | 7.8097 |
0.3032 | 2.9256 | 6000 | 0.1989 | 29.9599 | 7.6787 |
0.2796 | 3.4131 | 7000 | 0.1679 | 27.7614 | 6.8013 |
0.2535 | 3.9008 | 8000 | 0.1830 | 27.7570 | 6.8842 |
0.2304 | 4.3882 | 9000 | 0.1762 | 26.8273 | 6.8029 |
0.2275 | 4.8759 | 10000 | 0.1585 | 25.9153 | 6.3398 |
0.2017 | 5.3633 | 11000 | 0.1543 | 25.6554 | 6.3042 |
0.2087 | 5.8510 | 12000 | 0.1536 | 25.4968 | 6.2214 |
0.1782 | 6.3385 | 13000 | 0.1549 | 25.4042 | 6.1796 |
0.1721 | 6.8261 | 14000 | 0.1481 | 25.2236 | 6.1551 |
0.1755 | 7.3136 | 15000 | 0.1509 | 25.2721 | 6.1883 |
0.1436 | 7.8013 | 16000 | 0.1495 | 24.2323 | 5.8687 |
0.1362 | 8.2887 | 17000 | 0.1483 | 24.2851 | 5.8016 |
0.1355 | 8.7764 | 18000 | 0.1406 | 23.7476 | 5.6328 |
0.1082 | 9.2638 | 19000 | 0.1375 | 23.7168 | 5.6210 |
0.1211 | 9.7515 | 20000 | 0.1370 | 23.3952 | 5.5894 |
0.1149 | 10.2390 | 21000 | 0.1367 | 23.2982 | 5.4931 |
0.1026 | 10.7267 | 22000 | 0.1322 | 22.9458 | 5.3929 |
0.1182 | 11.2141 | 23000 | 0.1304 | 22.9458 | 5.3693 |
0.1008 | 11.7018 | 24000 | 0.1296 | 22.4435 | 5.2241 |
0.0989 | 12.1892 | 25000 | 0.1281 | 22.5536 | 5.2233 |
0.0891 | 12.6769 | 26000 | 0.1312 | 22.4347 | 5.2241 |
0.0816 | 13.1644 | 27000 | 0.1231 | 21.9148 | 5.0189 |
0.0851 | 13.6520 | 28000 | 0.1191 | 21.3949 | 4.8588 |
0.0736 | 14.1395 | 29000 | 0.1247 | 21.8707 | 4.9834 |
0.0745 | 14.6272 | 30000 | 0.1114 | 21.3420 | 4.8075 |
0.0702 | 15.1146 | 31000 | 0.1172 | 21.4786 | 4.8375 |
0.0654 | 15.6023 | 32000 | 0.1145 | 21.1041 | 4.8130 |
0.065 | 16.0897 | 33000 | 0.1133 | 20.7296 | 4.6875 |
0.0578 | 16.5774 | 34000 | 0.1181 | 20.7472 | 4.6662 |
0.0565 | 17.0649 | 35000 | 0.1156 | 20.6591 | 4.6473 |
0.0609 | 17.5525 | 36000 | 0.1078 | 20.4256 | 4.5558 |
0.051 | 18.0400 | 37000 | 0.1099 | 20.2362 | 4.5116 |
0.0487 | 18.5277 | 38000 | 0.1102 | 20.0731 | 4.4856 |
0.0438 | 19.0151 | 39000 | 0.1109 | 20.1657 | 4.4903 |
0.0464 | 19.5028 | 40000 | 0.1102 | 19.9277 | 4.4469 |
0.0418 | 19.9905 | 41000 | 0.1076 | 20.0731 | 4.4224 |
0.0451 | 20.4779 | 42000 | 0.1056 | 19.5753 | 4.3120 |
0.0409 | 20.9656 | 43000 | 0.1045 | 19.4960 | 4.2773 |
0.0352 | 21.4531 | 44000 | 0.1082 | 19.3902 | 4.2591 |
0.0416 | 21.9407 | 45000 | 0.1043 | 19.2008 | 4.1944 |
0.0318 | 22.4282 | 46000 | 0.1059 | 19.4255 | 4.2370 |
0.0371 | 22.9159 | 47000 | 0.1055 | 19.1523 | 4.1794 |
0.0351 | 23.4033 | 48000 | 0.1032 | 19.0466 | 4.1408 |
0.0347 | 23.8910 | 49000 | 0.1000 | 18.9673 | 4.1163 |
0.0357 | 24.3784 | 50000 | 0.1046 | 19.0378 | 4.1439 |
0.0278 | 24.8661 | 51000 | 0.1016 | 18.9012 | 4.0776 |
0.0326 | 25.3536 | 52000 | 0.1093 | 18.7514 | 4.0697 |
0.0294 | 25.8413 | 53000 | 0.1030 | 18.8527 | 4.0516 |
0.0294 | 26.3287 | 54000 | 0.1026 | 18.7073 | 4.0114 |
0.023 | 26.8164 | 55000 | 0.1029 | 18.6897 | 4.0137 |
0.0236 | 27.3038 | 56000 | 0.1041 | 18.7249 | 4.0058 |
0.03 | 27.7915 | 57000 | 0.1029 | 18.6544 | 3.9979 |
0.0246 | 28.2790 | 58000 | 0.1026 | 18.6280 | 3.9822 |
0.0277 | 28.7666 | 59000 | 0.1027 | 18.6500 | 3.9806 |
0.0355 | 29.2541 | 60000 | 0.1026 | 18.6412 | 3.9782 |
0.0325 | 29.7418 | 61000 | 0.1025 | 18.6544 | 3.9782 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support