wav2vec2-xls-r-1b-E4-faroese-100h-30-epochs_20250208_v2

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1025
  • Wer: 18.6544
  • Cer: 3.9782

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0062 0.4877 1000 0.7503 73.8424 22.8910
0.5172 0.9754 2000 0.2760 37.2164 9.8233
0.3955 1.4628 3000 0.2290 32.4580 8.5024
0.3725 1.9505 4000 0.2194 31.7972 8.2350
0.3008 2.4379 5000 0.2091 30.6340 7.8097
0.3032 2.9256 6000 0.1989 29.9599 7.6787
0.2796 3.4131 7000 0.1679 27.7614 6.8013
0.2535 3.9008 8000 0.1830 27.7570 6.8842
0.2304 4.3882 9000 0.1762 26.8273 6.8029
0.2275 4.8759 10000 0.1585 25.9153 6.3398
0.2017 5.3633 11000 0.1543 25.6554 6.3042
0.2087 5.8510 12000 0.1536 25.4968 6.2214
0.1782 6.3385 13000 0.1549 25.4042 6.1796
0.1721 6.8261 14000 0.1481 25.2236 6.1551
0.1755 7.3136 15000 0.1509 25.2721 6.1883
0.1436 7.8013 16000 0.1495 24.2323 5.8687
0.1362 8.2887 17000 0.1483 24.2851 5.8016
0.1355 8.7764 18000 0.1406 23.7476 5.6328
0.1082 9.2638 19000 0.1375 23.7168 5.6210
0.1211 9.7515 20000 0.1370 23.3952 5.5894
0.1149 10.2390 21000 0.1367 23.2982 5.4931
0.1026 10.7267 22000 0.1322 22.9458 5.3929
0.1182 11.2141 23000 0.1304 22.9458 5.3693
0.1008 11.7018 24000 0.1296 22.4435 5.2241
0.0989 12.1892 25000 0.1281 22.5536 5.2233
0.0891 12.6769 26000 0.1312 22.4347 5.2241
0.0816 13.1644 27000 0.1231 21.9148 5.0189
0.0851 13.6520 28000 0.1191 21.3949 4.8588
0.0736 14.1395 29000 0.1247 21.8707 4.9834
0.0745 14.6272 30000 0.1114 21.3420 4.8075
0.0702 15.1146 31000 0.1172 21.4786 4.8375
0.0654 15.6023 32000 0.1145 21.1041 4.8130
0.065 16.0897 33000 0.1133 20.7296 4.6875
0.0578 16.5774 34000 0.1181 20.7472 4.6662
0.0565 17.0649 35000 0.1156 20.6591 4.6473
0.0609 17.5525 36000 0.1078 20.4256 4.5558
0.051 18.0400 37000 0.1099 20.2362 4.5116
0.0487 18.5277 38000 0.1102 20.0731 4.4856
0.0438 19.0151 39000 0.1109 20.1657 4.4903
0.0464 19.5028 40000 0.1102 19.9277 4.4469
0.0418 19.9905 41000 0.1076 20.0731 4.4224
0.0451 20.4779 42000 0.1056 19.5753 4.3120
0.0409 20.9656 43000 0.1045 19.4960 4.2773
0.0352 21.4531 44000 0.1082 19.3902 4.2591
0.0416 21.9407 45000 0.1043 19.2008 4.1944
0.0318 22.4282 46000 0.1059 19.4255 4.2370
0.0371 22.9159 47000 0.1055 19.1523 4.1794
0.0351 23.4033 48000 0.1032 19.0466 4.1408
0.0347 23.8910 49000 0.1000 18.9673 4.1163
0.0357 24.3784 50000 0.1046 19.0378 4.1439
0.0278 24.8661 51000 0.1016 18.9012 4.0776
0.0326 25.3536 52000 0.1093 18.7514 4.0697
0.0294 25.8413 53000 0.1030 18.8527 4.0516
0.0294 26.3287 54000 0.1026 18.7073 4.0114
0.023 26.8164 55000 0.1029 18.6897 4.0137
0.0236 27.3038 56000 0.1041 18.7249 4.0058
0.03 27.7915 57000 0.1029 18.6544 3.9979
0.0246 28.2790 58000 0.1026 18.6280 3.9822
0.0277 28.7666 59000 0.1027 18.6500 3.9806
0.0355 29.2541 60000 0.1026 18.6412 3.9782
0.0325 29.7418 61000 0.1025 18.6544 3.9782

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support