wav2vec2-xls-r-1b-E4-faroese-100h-30-epochs_20250208_v4

This model is a fine-tuned version of davidilag/wav2vec2-xls-r-1b-scandinavian-E4-100h-30-epochs-20250208_v3 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1043
  • Wer: 18.7161
  • Cer: 4.0366

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.7469 0.4877 1000 0.4760 52.5224 15.1744
0.4523 0.9754 2000 0.2306 32.5858 8.5932
0.3754 1.4628 3000 0.2148 30.9865 7.8720
0.3589 1.9505 4000 0.1997 30.3961 7.7332
0.3001 2.4379 5000 0.2112 29.9203 7.7316
0.3195 2.9256 6000 0.1985 29.2814 7.5272
0.271 3.4131 7000 0.1791 27.8847 6.9938
0.2524 3.9008 8000 0.1839 27.8098 6.9355
0.2384 4.3882 9000 0.1701 27.0388 6.7532
0.2615 4.8759 10000 0.1603 26.6863 6.6262
0.2282 5.3633 11000 0.1659 26.2458 6.5189
0.2191 5.8510 12000 0.1575 26.2766 6.4636
0.1803 6.3385 13000 0.1524 26.0519 6.3476
0.1836 6.8261 14000 0.1498 25.1399 6.1638
0.1755 7.3136 15000 0.1499 24.8843 6.0178
0.1607 7.8013 16000 0.1546 24.6552 6.0155
0.146 8.2887 17000 0.1450 24.3865 5.8727
0.1478 8.7764 18000 0.1426 24.0428 5.7795
0.1173 9.2638 19000 0.1327 23.7520 5.6793
0.1326 9.7515 20000 0.1368 23.8269 5.6573
0.121 10.2390 21000 0.1339 23.5714 5.5421
0.115 10.7267 22000 0.1314 23.2101 5.5184
0.1169 11.2141 23000 0.1260 22.8312 5.3945
0.1115 11.7018 24000 0.1255 22.6814 5.3243
0.1017 12.1892 25000 0.1294 22.5625 5.3109
0.0993 12.6769 26000 0.1250 21.9456 5.1531
0.0918 13.1644 27000 0.1292 22.1615 5.1775
0.0943 13.6520 28000 0.1292 21.8135 5.0955
0.0719 14.1395 29000 0.1278 21.6769 4.9834
0.0792 14.6272 30000 0.1157 21.6328 4.9219
0.0761 15.1146 31000 0.1158 21.5403 4.9172
0.0762 15.6023 32000 0.1105 21.0512 4.7380
0.0641 16.0897 33000 0.1164 20.8750 4.7278
0.0628 16.5774 34000 0.1125 21.0689 4.7467
0.0612 17.0649 35000 0.1089 20.8221 4.6923
0.0671 17.5525 36000 0.1108 20.3463 4.5968
0.0499 18.0400 37000 0.1130 20.5930 4.6536
0.0475 18.5277 38000 0.1090 20.1613 4.5313
0.0457 19.0151 39000 0.1116 20.0511 4.5037
0.0491 19.5028 40000 0.1041 19.8793 4.4264
0.0421 19.9905 41000 0.1053 19.8925 4.3909
0.0521 20.4779 42000 0.1104 19.5841 4.3443
0.0413 20.9656 43000 0.1120 19.6370 4.3617
0.0388 21.4531 44000 0.1088 19.5841 4.3538
0.0451 21.9407 45000 0.1058 19.3506 4.2607
0.0301 22.4282 46000 0.1091 19.1611 4.2189
0.0333 22.9159 47000 0.1102 19.2713 4.2291
0.0343 23.4033 48000 0.1074 19.2404 4.2165
0.0347 23.8910 49000 0.1075 19.1391 4.1826
0.0343 24.3784 50000 0.1066 19.0422 4.1494
0.0267 24.8661 51000 0.1044 19.0862 4.1518
0.0315 25.3536 52000 0.1066 18.9012 4.0966
0.0303 25.8413 53000 0.1034 18.9232 4.1013
0.0297 26.3287 54000 0.1075 18.9188 4.0926
0.0226 26.8164 55000 0.1044 18.9100 4.0879
0.0225 27.3038 56000 0.1064 18.8263 4.0674
0.0274 27.7915 57000 0.1050 18.7514 4.0595
0.0259 28.2790 58000 0.1053 18.6985 4.0453
0.0286 28.7666 59000 0.1047 18.6985 4.0358
0.0336 29.2541 60000 0.1043 18.6809 4.0311
0.0376 29.7418 61000 0.1043 18.7161 4.0366

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
963M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for davidilag/wav2vec2-xls-r-1b-E4-faroese-100h-30-epochs_20250208_v4