wav2vec2-xls-r-1b-E4-faroese-100h-30-epochs_20250208_v4
This model is a fine-tuned version of davidilag/wav2vec2-xls-r-1b-scandinavian-E4-100h-30-epochs-20250208_v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1043
- Wer: 18.7161
- Cer: 4.0366
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5000
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.7469 | 0.4877 | 1000 | 0.4760 | 52.5224 | 15.1744 |
0.4523 | 0.9754 | 2000 | 0.2306 | 32.5858 | 8.5932 |
0.3754 | 1.4628 | 3000 | 0.2148 | 30.9865 | 7.8720 |
0.3589 | 1.9505 | 4000 | 0.1997 | 30.3961 | 7.7332 |
0.3001 | 2.4379 | 5000 | 0.2112 | 29.9203 | 7.7316 |
0.3195 | 2.9256 | 6000 | 0.1985 | 29.2814 | 7.5272 |
0.271 | 3.4131 | 7000 | 0.1791 | 27.8847 | 6.9938 |
0.2524 | 3.9008 | 8000 | 0.1839 | 27.8098 | 6.9355 |
0.2384 | 4.3882 | 9000 | 0.1701 | 27.0388 | 6.7532 |
0.2615 | 4.8759 | 10000 | 0.1603 | 26.6863 | 6.6262 |
0.2282 | 5.3633 | 11000 | 0.1659 | 26.2458 | 6.5189 |
0.2191 | 5.8510 | 12000 | 0.1575 | 26.2766 | 6.4636 |
0.1803 | 6.3385 | 13000 | 0.1524 | 26.0519 | 6.3476 |
0.1836 | 6.8261 | 14000 | 0.1498 | 25.1399 | 6.1638 |
0.1755 | 7.3136 | 15000 | 0.1499 | 24.8843 | 6.0178 |
0.1607 | 7.8013 | 16000 | 0.1546 | 24.6552 | 6.0155 |
0.146 | 8.2887 | 17000 | 0.1450 | 24.3865 | 5.8727 |
0.1478 | 8.7764 | 18000 | 0.1426 | 24.0428 | 5.7795 |
0.1173 | 9.2638 | 19000 | 0.1327 | 23.7520 | 5.6793 |
0.1326 | 9.7515 | 20000 | 0.1368 | 23.8269 | 5.6573 |
0.121 | 10.2390 | 21000 | 0.1339 | 23.5714 | 5.5421 |
0.115 | 10.7267 | 22000 | 0.1314 | 23.2101 | 5.5184 |
0.1169 | 11.2141 | 23000 | 0.1260 | 22.8312 | 5.3945 |
0.1115 | 11.7018 | 24000 | 0.1255 | 22.6814 | 5.3243 |
0.1017 | 12.1892 | 25000 | 0.1294 | 22.5625 | 5.3109 |
0.0993 | 12.6769 | 26000 | 0.1250 | 21.9456 | 5.1531 |
0.0918 | 13.1644 | 27000 | 0.1292 | 22.1615 | 5.1775 |
0.0943 | 13.6520 | 28000 | 0.1292 | 21.8135 | 5.0955 |
0.0719 | 14.1395 | 29000 | 0.1278 | 21.6769 | 4.9834 |
0.0792 | 14.6272 | 30000 | 0.1157 | 21.6328 | 4.9219 |
0.0761 | 15.1146 | 31000 | 0.1158 | 21.5403 | 4.9172 |
0.0762 | 15.6023 | 32000 | 0.1105 | 21.0512 | 4.7380 |
0.0641 | 16.0897 | 33000 | 0.1164 | 20.8750 | 4.7278 |
0.0628 | 16.5774 | 34000 | 0.1125 | 21.0689 | 4.7467 |
0.0612 | 17.0649 | 35000 | 0.1089 | 20.8221 | 4.6923 |
0.0671 | 17.5525 | 36000 | 0.1108 | 20.3463 | 4.5968 |
0.0499 | 18.0400 | 37000 | 0.1130 | 20.5930 | 4.6536 |
0.0475 | 18.5277 | 38000 | 0.1090 | 20.1613 | 4.5313 |
0.0457 | 19.0151 | 39000 | 0.1116 | 20.0511 | 4.5037 |
0.0491 | 19.5028 | 40000 | 0.1041 | 19.8793 | 4.4264 |
0.0421 | 19.9905 | 41000 | 0.1053 | 19.8925 | 4.3909 |
0.0521 | 20.4779 | 42000 | 0.1104 | 19.5841 | 4.3443 |
0.0413 | 20.9656 | 43000 | 0.1120 | 19.6370 | 4.3617 |
0.0388 | 21.4531 | 44000 | 0.1088 | 19.5841 | 4.3538 |
0.0451 | 21.9407 | 45000 | 0.1058 | 19.3506 | 4.2607 |
0.0301 | 22.4282 | 46000 | 0.1091 | 19.1611 | 4.2189 |
0.0333 | 22.9159 | 47000 | 0.1102 | 19.2713 | 4.2291 |
0.0343 | 23.4033 | 48000 | 0.1074 | 19.2404 | 4.2165 |
0.0347 | 23.8910 | 49000 | 0.1075 | 19.1391 | 4.1826 |
0.0343 | 24.3784 | 50000 | 0.1066 | 19.0422 | 4.1494 |
0.0267 | 24.8661 | 51000 | 0.1044 | 19.0862 | 4.1518 |
0.0315 | 25.3536 | 52000 | 0.1066 | 18.9012 | 4.0966 |
0.0303 | 25.8413 | 53000 | 0.1034 | 18.9232 | 4.1013 |
0.0297 | 26.3287 | 54000 | 0.1075 | 18.9188 | 4.0926 |
0.0226 | 26.8164 | 55000 | 0.1044 | 18.9100 | 4.0879 |
0.0225 | 27.3038 | 56000 | 0.1064 | 18.8263 | 4.0674 |
0.0274 | 27.7915 | 57000 | 0.1050 | 18.7514 | 4.0595 |
0.0259 | 28.2790 | 58000 | 0.1053 | 18.6985 | 4.0453 |
0.0286 | 28.7666 | 59000 | 0.1047 | 18.6985 | 4.0358 |
0.0336 | 29.2541 | 60000 | 0.1043 | 18.6809 | 4.0311 |
0.0376 | 29.7418 | 61000 | 0.1043 | 18.7161 | 4.0366 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for davidilag/wav2vec2-xls-r-1b-E4-faroese-100h-30-epochs_20250208_v4
Base model
facebook/wav2vec2-xls-r-1b