wav2vec2-xls-r-300m-converted-faroese-100h-30-epochs_2025-07-10_v2

This model was trained from scratch on the Ravnursson dataset. It achieves the following results on the Test set:

  • Loss: 0.0990
  • Wer: 7.72
  • Cer: 2.15

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.3186 0.4877 1000 3.2374 100.0 99.9992
1.261 0.9754 2000 0.8817 71.1239 21.7903
0.6199 1.4628 3000 0.3426 41.8690 11.1985
0.4976 1.9505 4000 0.2694 36.4365 9.4027
0.3769 2.4379 5000 0.2169 31.5108 7.8902
0.3502 2.9256 6000 0.1904 29.9731 7.3221
0.2701 3.4131 7000 0.1674 27.8495 6.7232
0.275 3.9008 8000 0.1534 26.8802 6.4518
0.2219 4.3882 9000 0.1527 26.5850 6.3855
0.2399 4.8759 10000 0.1408 25.2985 6.0305
0.1945 5.3633 11000 0.1464 25.4747 6.0305
0.1953 5.8510 12000 0.1311 24.7654 5.7724
0.1626 6.3385 13000 0.1321 24.3292 5.7212
0.1752 6.8261 14000 0.1313 23.7829 5.5594
0.1493 7.3136 15000 0.1320 23.4260 5.4616
0.1526 7.8013 16000 0.1254 22.9898 5.3606
0.14 8.2887 17000 0.1223 22.8532 5.2351
0.1454 8.7764 18000 0.1251 22.4171 5.1531
0.1218 9.2638 19000 0.1152 22.2012 5.0789
0.1239 9.7515 20000 0.1223 22.0337 5.0442
0.1133 10.2390 21000 0.1155 22.1835 5.0331
0.1073 10.7267 22000 0.1159 22.2496 5.0544
0.0949 11.2141 23000 0.1169 21.7253 4.9243
0.093 11.7018 24000 0.1157 21.7430 4.9456
0.0963 12.1892 25000 0.1128 21.6504 4.9337
0.0913 12.6769 26000 0.1122 21.4786 4.8698
0.0853 13.1644 27000 0.1133 21.2407 4.8162
0.0824 13.6520 28000 0.1084 21.1746 4.7467
0.074 14.1395 29000 0.1127 21.0160 4.7089
0.0888 14.6272 30000 0.1070 21.0248 4.7057
0.0757 15.1146 31000 0.1128 20.8706 4.6702
0.0699 15.6023 32000 0.1045 20.8398 4.6244
0.0728 16.0897 33000 0.1077 20.6988 4.5929
0.0678 16.5774 34000 0.1064 20.5137 4.5242
0.0592 17.0649 35000 0.1040 20.4476 4.5021
0.0545 17.5525 36000 0.1100 20.4476 4.5084
0.0652 18.0400 37000 0.1025 20.2978 4.4437
0.0538 18.5277 38000 0.1044 20.0423 4.3901
0.0578 19.0151 39000 0.1043 19.9674 4.3767
0.0537 19.5028 40000 0.1060 19.9189 4.3506
0.0493 19.9905 41000 0.1017 19.8837 4.3199
0.0544 20.4779 42000 0.0990 19.8176 4.3017
0.0429 20.9656 43000 0.1009 19.7163 4.2694
0.0389 21.4531 44000 0.0994 19.6678 4.2354
0.0651 21.9407 45000 0.0988 19.6986 4.2394
0.0544 22.4282 46000 0.0978 19.5797 4.1991
0.0577 22.9159 47000 0.0993 19.6193 4.2181
0.0555 23.4033 48000 0.0971 19.6590 4.1984
0.0418 23.8910 49000 0.0997 19.4034 4.1739
0.0524 24.3784 50000 0.0976 19.4739 4.1660
0.0424 24.8661 51000 0.0980 19.4079 4.1526
0.0412 25.3536 52000 0.0992 19.3021 4.1400
0.0394 25.8413 53000 0.0992 19.3506 4.1621
0.0459 26.3287 54000 0.0978 19.3021 4.1337
0.0391 26.8164 55000 0.0987 19.2536 4.1179
0.0434 27.3038 56000 0.0985 19.2492 4.1037
0.0494 27.7915 57000 0.0982 19.2228 4.0982
0.0417 28.2790 58000 0.0997 19.2360 4.1084
0.0417 28.7666 59000 0.0991 19.2360 4.1076
0.0509 29.2541 60000 0.0990 19.2492 4.1092
0.0498 29.7418 61000 0.0990 19.2404 4.1084

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2
Downloads last month
20
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support