wav2vec2-xls-r-300m-pre_trained-converted-faroese-100h-30-epochs_2025-07-10

This model was trained from scratch on the Ravnursson 100h dataset. It achieves the following results on the Test set:

  • Loss: 0.0986
  • Wer: 8.21
  • Cer: 2.28

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
3.3152 0.4877 1000 3.2279 100.0 99.4935
0.9943 0.9754 2000 0.6195 53.4035 15.3503
0.5408 1.4628 3000 0.2845 36.1149 9.5203
0.4766 1.9505 4000 0.2440 33.9825 8.6137
0.3776 2.4379 5000 0.1999 30.5283 7.6093
0.3464 2.9256 6000 0.1867 28.9289 7.1225
0.2626 3.4131 7000 0.1706 27.6248 6.7627
0.2949 3.9008 8000 0.1612 26.5454 6.4439
0.2243 4.3882 9000 0.1570 25.9858 6.3421
0.2466 4.8759 10000 0.1505 25.3866 6.0762
0.1965 5.3633 11000 0.1538 25.3470 6.0786
0.2083 5.8510 12000 0.1383 24.6068 5.8821
0.1897 6.3385 13000 0.1318 24.1398 5.7077
0.1919 6.8261 14000 0.1301 24.2587 5.6943
0.1547 7.3136 15000 0.1318 23.4965 5.5634
0.1603 7.8013 16000 0.1234 22.7607 5.2880
0.1525 8.2887 17000 0.1323 23.1572 5.3811
0.1476 8.7764 18000 0.1262 22.8621 5.3077
0.1356 9.2638 19000 0.1211 22.6814 5.2856
0.1319 9.7515 20000 0.1246 22.3289 5.1878
0.1285 10.2390 21000 0.1200 22.2100 5.1089
0.1194 10.7267 22000 0.1179 22.0822 5.0892
0.1044 11.2141 23000 0.1192 21.9985 5.0734
0.1034 11.7018 24000 0.1210 21.9544 5.0560
0.1072 12.1892 25000 0.1158 21.6989 4.9629
0.0933 12.6769 26000 0.1140 21.9016 5.0395
0.0973 13.1644 27000 0.1154 21.3068 4.8556
0.0974 13.6520 28000 0.1114 21.5447 4.8840
0.0834 14.1395 29000 0.1084 21.3332 4.8193
0.0987 14.6272 30000 0.1062 21.2099 4.7736
0.0834 15.1146 31000 0.1088 20.9323 4.7270
0.0785 15.6023 32000 0.1059 21.0336 4.7183
0.0857 16.0897 33000 0.1021 20.7913 4.6449
0.0815 16.5774 34000 0.1043 20.4917 4.5889
0.0656 17.0649 35000 0.1143 20.7957 4.6292
0.0578 17.5525 36000 0.1070 20.5622 4.5747
0.0687 18.0400 37000 0.1054 20.5005 4.5408
0.0592 18.5277 38000 0.1100 20.2185 4.4927
0.065 19.0151 39000 0.1052 20.2317 4.4990
0.059 19.5028 40000 0.1032 20.3066 4.4832
0.0508 19.9905 41000 0.1080 20.2846 4.4856
0.0553 20.4779 42000 0.1074 20.3287 4.4808
0.0469 20.9656 43000 0.0979 19.8749 4.3285
0.0447 21.4531 44000 0.1020 20.0070 4.3885
0.0695 21.9407 45000 0.1017 19.9321 4.3491
0.0576 22.4282 46000 0.1026 19.8837 4.3585
0.0642 22.9159 47000 0.1034 19.8132 4.3388
0.0597 23.4033 48000 0.1019 19.7427 4.2899
0.0473 23.8910 49000 0.1054 19.7471 4.3285
0.0544 24.3784 50000 0.1001 19.6370 4.2859
0.0479 24.8661 51000 0.1018 19.5973 4.2575
0.0467 25.3536 52000 0.0991 19.6017 4.2662
0.0443 25.8413 53000 0.0983 19.5136 4.2441
0.0483 26.3287 54000 0.0997 19.5444 4.2410
0.0436 26.8164 55000 0.1007 19.5532 4.2425
0.0459 27.3038 56000 0.0992 19.5268 4.2418
0.0508 27.7915 57000 0.0987 19.5004 4.2299
0.0526 28.2790 58000 0.0991 19.4828 4.2291
0.0417 28.7666 59000 0.0989 19.4960 4.2268
0.0517 29.2541 60000 0.0985 19.4960 4.2276
0.057 29.7418 61000 0.0986 19.4916 4.2276

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2
Downloads last month
17
Safetensors
Model size
315M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support