YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

DC-AE-Lite

[github]

Decoding is often the speed bottleneck in few-step latent diffusion models. We release DC-AE-Lite to resolve this problem. It has the same encoder of DC-AE-f32c32-SANA-1.0 while having a much smaller decoder. Without training, it can be applied to diffusion model trained with DC-AE-f32c32-SANA-1.0.

Demo


DC-AE-Lite vs DC-AE reconstruction visual quality


DC-AE-Lite achieves 1.8× faster decoding than DC-AE with similar reconstruction quality

Usage

from diffusers import AutoencoderDC
from PIL import Image
import torch
import torchvision.transforms as transforms
from torchvision.utils import save_image

device = torch.device("cuda")
dc_ae_lite = AutoencoderDC.from_pretrained("dc-ai/dc-ae-lite-f32c32-diffusers").to(device).eval()

transform = transforms.Compose([
    transforms.CenterCrop((1024,1024)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])

image = Image.open("assets/fig/girl.png")

x = transform(image)[None].to(device)
latent = dc_ae_lite.encode(x).latent
print(f"latent shape: {latent.shape}")

y = dc_ae_lite.decode(latent).sample
save_image(y * 0.5 + 0.5, "demo_dc_ae_lite.png")
Downloads last month
1,534
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including dc-ai/dc-ae-lite-f32c32-diffusers