wav2vec2-large-mms-1b-igbo

This model is a fine-tuned version of facebook/mms-1b-all on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4487
  • Wer: 0.4385

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5485 0.0662 1000 0.7264 0.5983
0.5147 0.1324 2000 0.6157 0.5242
0.4708 0.1986 3000 0.6952 0.5986
0.4622 0.2648 4000 0.5811 0.4961
0.4792 0.3310 5000 0.6102 0.5537
0.443 0.3972 6000 0.5850 0.5035
0.4471 0.4635 7000 0.5633 0.5028
0.4528 0.5297 8000 0.5434 0.4816
0.4588 0.5959 9000 0.5881 0.5055
0.4215 0.6621 10000 0.5508 0.5089
0.4328 0.7283 11000 0.6404 0.5783
0.4341 0.7945 12000 0.5919 0.5443
0.4009 0.8607 13000 0.5558 0.5276
0.3945 0.9269 14000 0.5928 0.5400
0.4231 0.9931 15000 0.5397 0.4766
0.4001 1.0593 16000 0.5406 0.5065
0.3996 1.1255 17000 0.5299 0.4816
0.4275 1.1917 18000 0.5446 0.4962
0.3637 1.2579 19000 0.5525 0.4804
0.4127 1.3242 20000 0.5115 0.4789
0.3877 1.3904 21000 0.5398 0.4735
0.3756 1.4566 22000 0.4917 0.4624
0.3913 1.5228 23000 0.5166 0.4737
0.3838 1.5890 24000 0.5150 0.5000
0.3691 1.6552 25000 0.4945 0.4643
0.3905 1.7214 26000 0.5175 0.5236
0.3578 1.7876 27000 0.4977 0.4734
0.3598 1.8538 28000 0.5344 0.4816
0.3398 1.9200 29000 0.4834 0.4665
0.3785 1.9862 30000 0.4863 0.4604
0.3444 2.0524 31000 0.4886 0.4624
0.386 2.1186 32000 0.4933 0.4582
0.3398 2.1849 33000 0.4845 0.4588
0.3559 2.2511 34000 0.4964 0.4951
0.3615 2.3173 35000 0.4954 0.4740
0.346 2.3835 36000 0.4782 0.4622
0.3293 2.4497 37000 0.4775 0.4697
0.3329 2.5159 38000 0.4774 0.4597
0.3486 2.5821 39000 0.4916 0.4860
0.3356 2.6483 40000 0.4810 0.4551
0.3305 2.7145 41000 0.4788 0.4668
0.3226 2.7807 42000 0.4687 0.4465
0.3199 2.8469 43000 0.4748 0.4592
0.3222 2.9131 44000 0.4618 0.4441
0.3328 2.9793 45000 0.4627 0.4548
0.3326 3.0456 46000 0.4624 0.4456
0.2993 3.1118 47000 0.4640 0.4430
0.3116 3.1780 48000 0.4675 0.4550
0.3447 3.2442 49000 0.4586 0.4426
0.3079 3.3104 50000 0.4586 0.4433
0.3155 3.3766 51000 0.4577 0.4409
0.3021 3.4428 52000 0.4617 0.4453
0.3147 3.5090 53000 0.4560 0.4418
0.3368 3.5752 54000 0.4555 0.4424
0.2948 3.6414 55000 0.4536 0.4412
0.3169 3.7076 56000 0.4520 0.4402
0.3176 3.7738 57000 0.4533 0.4444
0.3164 3.8400 58000 0.4505 0.4382
0.3009 3.9062 59000 0.4497 0.4373
0.3114 3.9725 60000 0.4487 0.4385

Framework versions

  • Transformers 4.54.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
12
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for deepdml/wav2vec2-large-mms-1b-igbo-mix

Finetuned
(359)
this model

Datasets used to train deepdml/wav2vec2-large-mms-1b-igbo-mix

Evaluation results