deepdml's picture
Upload README.md with huggingface_hub
a5c7a62 verified
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - ymoslem/MediaSpeech
  - UBC-NLP/Casablanca
  - mozilla-foundation/common_voice_17_0
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Medium ar
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: ymoslem/MediaSpeech
          config: ar
          split: test
          args: ar
        metrics:
          - name: Wer
            type: wer
            value: 15.325045470739346

Whisper Medium ar

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4504
  • Wer: 15.3250

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2423 0.2 1000 2.0205 21.3178
0.0667 0.4 2000 2.3750 18.2033
0.047 0.6 3000 2.4276 17.5658
0.0249 0.8 4000 2.7231 16.1576
0.017 1.0 5000 2.4504 15.3250

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1

Citation

@misc{deepdml/whisper-medium-ar-mix-norm,
      title={Fine-tuned Whisper medium ASR model for speech recognition in Arabic},
      author={Jimenez, David},
      howpublished={\url{https://huggingface.co/deepdml/whisper-medium-ar-mix-norm}},
      year={2025}
    }