Gr00t-N1-libero-goal
from gr00t.eval.robot import RobotInferenceClient
from gr00t.experiment.data_config import DATA_CONFIG_MAP
from gr00t.model.policy import Gr00tPolicy
data_config = DATA_CONFIG_MAP[args.task_suite_name]
modality_config = data_config.modality_config()
transforms = data_config.transform()
policy_client = Gr00tPolicy(
# host=args.host,
# port=args.port,
model_path=args.pretrained_path,
modality_config=modality_config,
modality_transform=transforms,
embodiment_tag="new_embodiment",
device="cuda",
denoising_steps=16
)
batch = {
"video.image": img[None],
"video.wrist_image": wrist_img[None],
"state.x": state[0:1][None],
"state.y": state[1:2][None],
"state.z": state[2:3][None],
"state.roll": state[3:4][None],
"state.pitch": state[4:5][None],
"state.yaw": state[5:6][None],
"state.gripper": state[6:][None],
"annotation.human.action.task_description": [str(task_description)],
}
actions = policy_client.get_action(batch)
action_chunk = np.stack([
actions["action.x"],
actions["action.y"],
actions["action.z"],
actions["action.roll"],
actions["action.pitch"],
actions["action.yaw"],
actions["action.gripper"],
], axis=-1) # [B, 7]
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for delinqu/gr00t-libero-goal
Base model
nvidia/GR00T-N1-2B