|
from dataclasses import dataclass
|
|
from typing import List, Optional, Tuple, Union
|
|
import torch
|
|
from torch import nn
|
|
from transformers.utils import ModelOutput
|
|
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
|
|
|
|
|
|
MAT_LECT_TOKEN = '<MAT_LECT>'
|
|
NIKUD_CLASSES = ['', MAT_LECT_TOKEN, '\u05BC', '\u05B0', '\u05B1', '\u05B2', '\u05B3', '\u05B4', '\u05B5', '\u05B6', '\u05B7', '\u05B8', '\u05B9', '\u05BA', '\u05BB', '\u05BC\u05B0', '\u05BC\u05B1', '\u05BC\u05B2', '\u05BC\u05B3', '\u05BC\u05B4', '\u05BC\u05B5', '\u05BC\u05B6', '\u05BC\u05B7', '\u05BC\u05B8', '\u05BC\u05B9', '\u05BC\u05BA', '\u05BC\u05BB', '\u05C7', '\u05BC\u05C7']
|
|
SHIN_CLASSES = ['\u05C1', '\u05C2']
|
|
|
|
@dataclass
|
|
class MenakedLogitsOutput(ModelOutput):
|
|
nikud_logits: torch.FloatTensor = None
|
|
shin_logits: torch.FloatTensor = None
|
|
|
|
def detach(self):
|
|
return MenakedLogitsOutput(self.nikud_logits.detach(), self.shin_logits.detach())
|
|
|
|
@dataclass
|
|
class MenakedOutput(ModelOutput):
|
|
loss: Optional[torch.FloatTensor] = None
|
|
logits: Optional[MenakedLogitsOutput] = None
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
|
@dataclass
|
|
class MenakedLabels(ModelOutput):
|
|
nikud_labels: Optional[torch.FloatTensor] = None
|
|
shin_labels: Optional[torch.FloatTensor] = None
|
|
|
|
def detach(self):
|
|
return MenakedLabels(self.nikud_labels.detach(), self.shin_labels.detach())
|
|
|
|
def to(self, device):
|
|
return MenakedLabels(self.nikud_labels.to(device), self.shin_labels.to(device))
|
|
|
|
class BertMenakedHead(nn.Module):
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
if not hasattr(config, 'nikud_classes'):
|
|
config.nikud_classes = NIKUD_CLASSES
|
|
config.shin_classes = SHIN_CLASSES
|
|
config.mat_lect_token = MAT_LECT_TOKEN
|
|
|
|
self.num_nikud_classes = len(config.nikud_classes)
|
|
self.num_shin_classes = len(config.shin_classes)
|
|
|
|
|
|
self.nikud_cls = nn.Linear(config.hidden_size, self.num_nikud_classes)
|
|
self.shin_cls = nn.Linear(config.hidden_size, self.num_shin_classes)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
labels: Optional[MenakedLabels] = None):
|
|
|
|
|
|
nikud_logits = self.nikud_cls(hidden_states)
|
|
shin_logits = self.shin_cls(hidden_states)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss_fct = nn.CrossEntropyLoss()
|
|
loss = loss_fct(nikud_logits.view(-1, self.num_nikud_classes), labels.nikud_labels.view(-1))
|
|
loss += loss_fct(shin_logits.view(-1, self.num_shin_classes), labels.shin_labels.view(-1))
|
|
|
|
return loss, MenakedLogitsOutput(nikud_logits, shin_logits)
|
|
|
|
class BertForDiacritization(BertPreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.config = config
|
|
self.bert = BertModel(config, add_pooling_layer=False)
|
|
|
|
classifier_dropout = config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
|
|
self.menaked = BertMenakedHead(config)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
token_type_ids: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.Tensor] = None,
|
|
head_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple[torch.Tensor], MenakedOutput]:
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
bert_outputs = self.bert(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
token_type_ids=token_type_ids,
|
|
position_ids=position_ids,
|
|
head_mask=head_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
hidden_states = bert_outputs[0]
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
loss, logits = self.menaked(hidden_states, labels)
|
|
|
|
if not return_dict:
|
|
return (loss,logits) + bert_outputs[2:]
|
|
|
|
return MenakedOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=bert_outputs.hidden_states,
|
|
attentions=bert_outputs.attentions,
|
|
)
|
|
|
|
def predict(self, sentences: List[str], tokenizer: BertTokenizerFast, mark_matres_lectionis: str = None, padding='longest'):
|
|
sentences = [remove_nikkud(sentence) for sentence in sentences]
|
|
|
|
assert all(len(sentence) + 2 <= tokenizer.model_max_length for sentence in sentences), f'All sentences must be <= {tokenizer.model_max_length}, please segment and try again'
|
|
|
|
|
|
inputs = tokenizer(sentences, padding=padding, truncation=True, return_tensors='pt', return_offsets_mapping=True)
|
|
offset_mapping = inputs.pop('offset_mapping')
|
|
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
|
|
|
|
|
logits = self.forward(**inputs, return_dict=True).logits
|
|
nikud_predictions = logits.nikud_logits.argmax(dim=-1).tolist()
|
|
shin_predictions = logits.shin_logits.argmax(dim=-1).tolist()
|
|
|
|
ret = []
|
|
for sent_idx,(sentence,sent_offsets) in enumerate(zip(sentences, offset_mapping)):
|
|
|
|
output = []
|
|
prev_index = 0
|
|
for idx,offsets in enumerate(sent_offsets):
|
|
|
|
if offsets[0] > prev_index:
|
|
output.append(sentence[prev_index:offsets[0]])
|
|
if offsets[1] - offsets[0] != 1: continue
|
|
|
|
|
|
char = sentence[offsets[0]:offsets[1]]
|
|
prev_index = offsets[1]
|
|
if not is_hebrew_letter(char):
|
|
output.append(char)
|
|
continue
|
|
|
|
nikud = self.config.nikud_classes[nikud_predictions[sent_idx][idx]]
|
|
shin = '' if char != 'ש' else self.config.shin_classes[shin_predictions[sent_idx][idx]]
|
|
|
|
|
|
if nikud == self.config.mat_lect_token:
|
|
if not is_matres_letter(char): nikud = ''
|
|
elif mark_matres_lectionis is not None: nikud = mark_matres_lectionis
|
|
else: continue
|
|
|
|
output.append(char + shin + nikud)
|
|
output.append(sentence[prev_index:])
|
|
ret.append(''.join(output))
|
|
|
|
return ret
|
|
|
|
ALEF_ORD = ord('א')
|
|
TAF_ORD = ord('ת')
|
|
def is_hebrew_letter(char):
|
|
return ALEF_ORD <= ord(char) <= TAF_ORD
|
|
|
|
MATRES_LETTERS = list('אוי')
|
|
def is_matres_letter(char):
|
|
return char in MATRES_LETTERS
|
|
|
|
import re
|
|
nikud_pattern = re.compile(r'[\u05B0-\u05BD\u05C1\u05C2\u05C7]')
|
|
def remove_nikkud(text):
|
|
return nikud_pattern.sub('', text) |