metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1225740
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-m3
widget:
- source_sentence: >-
yoghurt cow chocolate chip sugar reduced half skimmed in plastic container
commercial supermarket shop organic shop </s> This facet allows recording
the place where the food was prepared for consumption. Only one descriptor
from this facet can be added to each entry.
sentences:
- >-
Product obtained during the processing of screened, dehusked barley into
pearl barley, semolina or flour. It consists principally of particles of
endosperm with fine fragments of the outer skins and some grain
screenings.
- Produced by industry in the form it arrives to the final consumer
- >-
Tree nuts from the plant classified under the species Corylus avellana
L., commonly known as Hazelnuts or Cobnuts or Common hazelnut. The part
consumed/analysed is not specified. When relevant, information on the
part consumed/analysed has to be reported with additional facet
descriptors. In case of data collections related to legislations, the
default part consumed/analysed is the one defined in the applicable
legislation.
- source_sentence: >-
sauce cold liquid preservation method onion mint croutons sweet pepper
prepared at a restaurant </s> This facet collects ingredients and/or
flavour note. Regarding ingredients this facet serves the purpose of
providing information on ingredients of a composite food being important
from some point of view, like allergic reactions, hazards, but also
aspect, taste. The descriptors for this facet are taken from a selected
subset of the main list (actually a relevant part of the food list). More
(none contradicting) descriptors can be applied to each entry.
sentences:
- >-
Spices from the fruits of the plant classified under the species Piper
cubeba L. f., commonly known as Cubeb fruit or Tailed pepper. The part
consumed/analysed is not specified. When relevant, information on the
part consumed/analysed has to be reported with additional facet
descriptors. In case of data collections related to legislations, the
default part consumed/analysed is the one defined in the applicable
legislation.
- >-
Tree nuts from the plant classified under the genus Juglans L. spp.,
commonly known as Walnuts or Walnut Black or Walnut English or Walnut
Persian. The part consumed/analysed is not specified. When relevant,
information on the part consumed/analysed has to be reported with
additional facet descriptors. In case of data collections related to
legislations, the default part consumed/analysed is the one defined in
the applicable legislation.
- >-
Fruiting vegetables from the plant classified under the species Capsicum
annuum var. grossum (L.) Sendtner or Capsicum annuum var. longum Bailey,
commonly known as Sweet peppers or Bell peppers or Paprika or
PeppersLong or Pimento or Pimiento. The part consumed/analysed is not
specified. When relevant, information on the part consumed/analysed has
to be reported with additional facet descriptors. In case of data
collections related to legislations, the default part consumed/analysed
is the one defined in the applicable legislation.
- source_sentence: >-
yoghurt with fruits cow passion fruit sweetened with sugar sucrose fat
content in plastic container commercial supermarket shop organic shop </s>
This facet provides some principal claims related to important
nutrients-ingredients, like fat, sugar etc. It is not intended to include
health claims or similar. The present guidance provides a limited list, to
be eventually improved during the evolution of the system. More than one
descriptor can be applied to each entry, provided they are not
contradicting each other.
sentences:
- >-
Product where all or part of the sugar has been added during processing
and is not naturally contained
- >-
Infusion materials from flowers of the plant classified under the genus
Rosa L. spp., commonly known as Rose infusion flowers. The part
consumed/analysed is not specified. When relevant, information on the
part consumed/analysed has to be reported with additional facet
descriptors. In case of data collections related to legislations, the
default part consumed/analysed is the one defined in the applicable
legislation.
- >-
Molecules providing intensive sweet sensation, used to substitute
natural sugars in food formulas
- source_sentence: >-
pepper sweet green facets desc physical state form as quantified grated
cooking method stir fried sauted preservation method fresh </s> This facet
describes the form (physical aspect) of the food as reported by the
consumer (as estimated during interview or as registered in the diary)
(Consumption Data) or as expressed in the analysis results in the
laboratory (Occurrence Data). Only one descriptor from this facet can be
added to each entry, apart from the specification “with solid particles”.
This facet should only be used in case of raw foods and ingredients (not
for composite foods).
sentences:
- Unprocessed and not stored over any long period
- >-
Paste coarsely divided, where particles are still recognisable at naked
eye
- The food item is considered in its form with skin
- source_sentence: >-
tome des bauges raw milk aoc in plastic container brand product name </s>
This facet allows recording whether the food list code was chosen because
of lack of information on the food item or because the proper entry in the
food list was missing. Only one descriptor from this facet can be added to
each entry.
sentences:
- >-
The food list item has been chosen because none of the more detailed
items corresponded to the available information. Please consider the
eventual addition of a new term in the list
- >-
The food item has a fat content which, when rounded with the standard
rules of rounding, equals 25 % (weight/weight)
- >-
Deprecated term that must NOT be used for any purpose. Its original
scopenote was: The group includes any type of Other fruiting vegetables
(exposure). The part consumed/analysed is by default unspecified. When
relevant, information on the part consumed/analysed has to be reported
with additional facet descriptors.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
results:
- task:
type: device-aware-information-retrieval
name: Device Aware Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9849655460430152
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9989559406974317
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9997911881394863
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9849655460430152
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.41713649335282244
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.25370641052411774
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.12752140321570266
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8690666019440294
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.993924343214383
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.998536283094646
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9999462151268373
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9936056206465634
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9919155008004455
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9909164791232326
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 96 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 96, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("disi-unibo-nlp/foodex-facet-descriptors-retriever")
# Run inference
sentences = [
'tome des bauges raw milk aoc in plastic container brand product name </s> This facet allows recording whether the food list code was chosen because of lack of information on the food item or because the proper entry in the food list was missing. Only one descriptor from this facet can be added to each entry.',
'The food list item has been chosen because none of the more detailed items corresponded to the available information. Please consider the eventual addition of a new term in the list',
'Deprecated term that must NOT be used for any purpose. Its original scopenote was: The group includes any type of Other fruiting vegetables (exposure). The part consumed/analysed is by default unspecified. When relevant, information on the part consumed/analysed has to be reported with additional facet descriptors.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Device Aware Information Retrieval
- Evaluated with
src.utils.eval_functions.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.985 |
cosine_accuracy@3 | 0.999 |
cosine_accuracy@5 | 0.9998 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.985 |
cosine_precision@3 | 0.4171 |
cosine_precision@5 | 0.2537 |
cosine_precision@10 | 0.1275 |
cosine_recall@1 | 0.8691 |
cosine_recall@3 | 0.9939 |
cosine_recall@5 | 0.9985 |
cosine_recall@10 | 0.9999 |
cosine_ndcg@10 | 0.9936 |
cosine_mrr@10 | 0.9919 |
cosine_map@100 | 0.9909 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,225,740 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 37 tokens
- mean: 89.82 tokens
- max: 96 tokens
- min: 6 tokens
- mean: 39.38 tokens
- max: 96 tokens
- min: 5 tokens
- mean: 39.59 tokens
- max: 96 tokens
- Samples:
sentence_0 sentence_1 sentence_2 peach fresh flesh baked with skin This facet allows recording different characteristics of the food: preservation treatments a food item underwent, technological steps or treatments applied while producing a food item, the way a food item has been heat treated before consumption and the way a food item has been prepared for final consumption (particularly needed for consumption surveys and includes preparation (like battering or breading) as well as heat treatment steps). More (none contradicting) descriptors can be applied to each entry.
Cooking by dry heat in or as if in an oven
Previously cooked or heat-treated fodd, heated again in order to raise its temperature (all different techniques)
turkey breast with bones frozen barbecued without skin This facet allows recording different characteristics of the food: preservation treatments a food item underwent, technological steps or treatments applied while producing a food item, the way a food item has been heat treated before consumption and the way a food item has been prepared for final consumption (particularly needed for consumption surveys and includes preparation (like battering or breading) as well as heat treatment steps). More (none contradicting) descriptors can be applied to each entry.
Preserving by freezing sufficiently rapidly to avoid spoilage and microbial growth
Drying to a water content low enough to guarantee microbiological stability, but still keeping a relatively soft structure (often used for fruit)
yoghurt flavoured cow blueberry sweetened with sugar sucrose whole in glass commercial supermarket shop organic shop brand product name This facet provides some principal claims related to important nutrients-ingredients, like fat, sugar etc. It is not intended to include health claims or similar. The present guidance provides a limited list, to be eventually improved during the evolution of the system. More than one descriptor can be applied to each entry, provided they are not contradicting each other.
The food item has all the natural (or average expected )fat content (for milk, at least the value defined in legislation, when available). In the case of cheese, the fat on the dry matter is 45-60%
The food item has an almost completely reduced amount of fat, with respect to the expected natural fat content (for milk, at least the value defined in legislation, when available). For meat, this is the entry for what is commercially intended as 'lean' meat, where fat is not visible.In the case of cheese, the fat on the dry matter is 10-25%
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 48per_device_eval_batch_size
: 48fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 48per_device_eval_batch_size
: 48per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0 | 0 | - | 0.0266 |
0.0196 | 500 | 1.5739 | - |
0.0392 | 1000 | 0.9043 | - |
0.0587 | 1500 | 0.8234 | - |
0.0783 | 2000 | 0.7861 | - |
0.0979 | 2500 | 0.7628 | - |
0.1175 | 3000 | 0.7348 | - |
0.1371 | 3500 | 0.7184 | - |
0.1566 | 4000 | 0.7167 | - |
0.1762 | 4500 | 0.7002 | - |
0.1958 | 5000 | 0.6791 | 0.9264 |
0.2154 | 5500 | 0.6533 | - |
0.2350 | 6000 | 0.6628 | - |
0.2545 | 6500 | 0.6637 | - |
0.2741 | 7000 | 0.639 | - |
0.2937 | 7500 | 0.6395 | - |
0.3133 | 8000 | 0.6358 | - |
0.3329 | 8500 | 0.617 | - |
0.3524 | 9000 | 0.6312 | - |
0.3720 | 9500 | 0.6107 | - |
0.3916 | 10000 | 0.6083 | 0.9518 |
0.4112 | 10500 | 0.6073 | - |
0.4307 | 11000 | 0.601 | - |
0.4503 | 11500 | 0.6047 | - |
0.4699 | 12000 | 0.5986 | - |
0.4895 | 12500 | 0.5913 | - |
0.5091 | 13000 | 0.5992 | - |
0.5286 | 13500 | 0.5911 | - |
0.5482 | 14000 | 0.5923 | - |
0.5678 | 14500 | 0.5816 | - |
0.5874 | 15000 | 0.582 | 0.9628 |
0.6070 | 15500 | 0.5815 | - |
0.6265 | 16000 | 0.5827 | - |
0.6461 | 16500 | 0.5885 | - |
0.6657 | 17000 | 0.5737 | - |
0.6853 | 17500 | 0.577 | - |
0.7049 | 18000 | 0.5687 | - |
0.7244 | 18500 | 0.5744 | - |
0.7440 | 19000 | 0.5774 | - |
0.7636 | 19500 | 0.5792 | - |
0.7832 | 20000 | 0.5645 | 0.9739 |
0.8028 | 20500 | 0.5769 | - |
0.8223 | 21000 | 0.5659 | - |
0.8419 | 21500 | 0.5635 | - |
0.8615 | 22000 | 0.5677 | - |
0.8811 | 22500 | 0.5693 | - |
0.9007 | 23000 | 0.5666 | - |
0.9202 | 23500 | 0.5526 | - |
0.9398 | 24000 | 0.5591 | - |
0.9594 | 24500 | 0.563 | - |
0.9790 | 25000 | 0.555 | 0.9808 |
0.9986 | 25500 | 0.5585 | - |
1.0 | 25537 | - | 0.9811 |
1.0181 | 26000 | 0.5595 | - |
1.0377 | 26500 | 0.5507 | - |
1.0573 | 27000 | 0.5582 | - |
1.0769 | 27500 | 0.5543 | - |
1.0964 | 28000 | 0.5598 | - |
1.1160 | 28500 | 0.5613 | - |
1.1356 | 29000 | 0.5457 | - |
1.1552 | 29500 | 0.5524 | - |
1.1748 | 30000 | 0.5324 | 0.9836 |
1.1943 | 30500 | 0.5531 | - |
1.2139 | 31000 | 0.5505 | - |
1.2335 | 31500 | 0.5623 | - |
1.2531 | 32000 | 0.5505 | - |
1.2727 | 32500 | 0.5583 | - |
1.2922 | 33000 | 0.548 | - |
1.3118 | 33500 | 0.5485 | - |
1.3314 | 34000 | 0.5509 | - |
1.3510 | 34500 | 0.54 | - |
1.3706 | 35000 | 0.5478 | 0.9835 |
1.3901 | 35500 | 0.5416 | - |
1.4097 | 36000 | 0.5438 | - |
1.4293 | 36500 | 0.543 | - |
1.4489 | 37000 | 0.547 | - |
1.4685 | 37500 | 0.5362 | - |
1.4880 | 38000 | 0.5536 | - |
1.5076 | 38500 | 0.5356 | - |
1.5272 | 39000 | 0.5382 | - |
1.5468 | 39500 | 0.5481 | - |
1.5664 | 40000 | 0.5302 | 0.9880 |
1.5859 | 40500 | 0.5275 | - |
1.6055 | 41000 | 0.5327 | - |
1.6251 | 41500 | 0.5414 | - |
1.6447 | 42000 | 0.5354 | - |
1.6643 | 42500 | 0.536 | - |
1.6838 | 43000 | 0.5364 | - |
1.7034 | 43500 | 0.5391 | - |
1.7230 | 44000 | 0.5342 | - |
1.7426 | 44500 | 0.5369 | - |
1.7621 | 45000 | 0.5387 | 0.9894 |
1.7817 | 45500 | 0.5312 | - |
1.8013 | 46000 | 0.5297 | - |
1.8209 | 46500 | 0.5222 | - |
1.8405 | 47000 | 0.5255 | - |
1.8600 | 47500 | 0.5379 | - |
1.8796 | 48000 | 0.5317 | - |
1.8992 | 48500 | 0.5312 | - |
1.9188 | 49000 | 0.5307 | - |
1.9384 | 49500 | 0.5375 | - |
1.9579 | 50000 | 0.527 | 0.9908 |
1.9775 | 50500 | 0.538 | - |
1.9971 | 51000 | 0.5312 | - |
2.0 | 51074 | - | 0.9911 |
2.0167 | 51500 | 0.5346 | - |
2.0363 | 52000 | 0.5279 | - |
2.0558 | 52500 | 0.517 | - |
2.0754 | 53000 | 0.5193 | - |
2.0950 | 53500 | 0.5286 | - |
2.1146 | 54000 | 0.5229 | - |
2.1342 | 54500 | 0.5183 | - |
2.1537 | 55000 | 0.5194 | 0.9915 |
2.1733 | 55500 | 0.5362 | - |
2.1929 | 56000 | 0.5186 | - |
2.2125 | 56500 | 0.5202 | - |
2.2321 | 57000 | 0.5276 | - |
2.2516 | 57500 | 0.5266 | - |
2.2712 | 58000 | 0.5334 | - |
2.2908 | 58500 | 0.5206 | - |
2.3104 | 59000 | 0.5229 | - |
2.3300 | 59500 | 0.5111 | - |
2.3495 | 60000 | 0.5175 | 0.9928 |
2.3691 | 60500 | 0.5235 | - |
2.3887 | 61000 | 0.5127 | - |
2.4083 | 61500 | 0.5291 | - |
2.4278 | 62000 | 0.5122 | - |
2.4474 | 62500 | 0.5196 | - |
2.4670 | 63000 | 0.5159 | - |
2.4866 | 63500 | 0.5207 | - |
2.5062 | 64000 | 0.5157 | - |
2.5257 | 64500 | 0.5094 | - |
2.5453 | 65000 | 0.5283 | 0.9937 |
2.5649 | 65500 | 0.5256 | - |
2.5845 | 66000 | 0.524 | - |
2.6041 | 66500 | 0.5324 | - |
2.6236 | 67000 | 0.5132 | - |
2.6432 | 67500 | 0.5203 | - |
2.6628 | 68000 | 0.5224 | - |
2.6824 | 68500 | 0.5255 | - |
2.7020 | 69000 | 0.5132 | - |
2.7215 | 69500 | 0.525 | - |
2.7411 | 70000 | 0.5257 | 0.9936 |
2.7607 | 70500 | 0.5206 | - |
2.7803 | 71000 | 0.514 | - |
2.7999 | 71500 | 0.5175 | - |
2.8194 | 72000 | 0.5245 | - |
2.8390 | 72500 | 0.5144 | - |
2.8586 | 73000 | 0.5246 | - |
2.8782 | 73500 | 0.5227 | - |
2.8978 | 74000 | 0.5199 | - |
2.9173 | 74500 | 0.5216 | - |
2.9369 | 75000 | 0.5253 | 0.9936 |
2.9565 | 75500 | 0.5303 | - |
2.9761 | 76000 | 0.5148 | - |
2.9957 | 76500 | 0.5248 | - |
3.0 | 76611 | - | 0.9936 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}