add AIBOM
#12
by
RiccardoDav
- opened
distilbert_distilbert-base-cased-distilled-squad.json
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bomFormat": "CycloneDX",
|
3 |
+
"specVersion": "1.6",
|
4 |
+
"serialNumber": "urn:uuid:2b114990-f3b1-410f-a8d4-d81d465f25d0",
|
5 |
+
"version": 1,
|
6 |
+
"metadata": {
|
7 |
+
"timestamp": "2025-06-05T09:42:15.918383+00:00",
|
8 |
+
"component": {
|
9 |
+
"type": "machine-learning-model",
|
10 |
+
"bom-ref": "distilbert/distilbert-base-cased-distilled-squad-1a73168b-1072-535e-9734-342d78002c07",
|
11 |
+
"name": "distilbert/distilbert-base-cased-distilled-squad",
|
12 |
+
"externalReferences": [
|
13 |
+
{
|
14 |
+
"url": "https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad",
|
15 |
+
"type": "documentation"
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"modelCard": {
|
19 |
+
"modelParameters": {
|
20 |
+
"task": "question-answering",
|
21 |
+
"architectureFamily": "distilbert",
|
22 |
+
"modelArchitecture": "DistilBertForQuestionAnswering",
|
23 |
+
"datasets": [
|
24 |
+
{
|
25 |
+
"ref": "squad-bfba1113-705c-51aa-a137-dd682ea9575a"
|
26 |
+
}
|
27 |
+
]
|
28 |
+
},
|
29 |
+
"properties": [
|
30 |
+
{
|
31 |
+
"name": "library_name",
|
32 |
+
"value": "transformers"
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"quantitativeAnalysis": {
|
36 |
+
"performanceMetrics": [
|
37 |
+
{
|
38 |
+
"slice": "dataset: squad, split: validation, config: plain_text",
|
39 |
+
"type": "exact_match",
|
40 |
+
"value": 79.5998
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"slice": "dataset: squad, split: validation, config: plain_text",
|
44 |
+
"type": "f1",
|
45 |
+
"value": 86.9965
|
46 |
+
}
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"consideration": {
|
50 |
+
"useCases": "This model can be used for question answering."
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"authors": [
|
54 |
+
{
|
55 |
+
"name": "distilbert"
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"licenses": [
|
59 |
+
{
|
60 |
+
"license": {
|
61 |
+
"id": "Apache-2.0",
|
62 |
+
"url": "https://spdx.org/licenses/Apache-2.0.html"
|
63 |
+
}
|
64 |
+
}
|
65 |
+
],
|
66 |
+
"description": "**Model Description:** The DistilBERT model was proposed in the blog post [Smaller, faster, cheaper, lighter: Introducing DistilBERT, adistilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5), and the paper [DistilBERT, adistilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108). DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than *bert-base-uncased*, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language understanding benchmark.This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on [SQuAD v1.1](https://huggingface.co/datasets/squad).- **Developed by:** Hugging Face- **Model Type:** Transformer-based language model- **Language(s):** English- **License:** Apache 2.0- **Related Models:** [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased)- **Resources for more information:**- See [this repository](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) for more about Distil\\* (a class of compressed models including this model)- See [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) for more information about knowledge distillation and the training procedure",
|
67 |
+
"tags": [
|
68 |
+
"transformers",
|
69 |
+
"pytorch",
|
70 |
+
"tf",
|
71 |
+
"rust",
|
72 |
+
"safetensors",
|
73 |
+
"openvino",
|
74 |
+
"distilbert",
|
75 |
+
"question-answering",
|
76 |
+
"en",
|
77 |
+
"dataset:squad",
|
78 |
+
"arxiv:1910.01108",
|
79 |
+
"arxiv:1910.09700",
|
80 |
+
"license:apache-2.0",
|
81 |
+
"model-index",
|
82 |
+
"endpoints_compatible",
|
83 |
+
"region:us"
|
84 |
+
]
|
85 |
+
}
|
86 |
+
},
|
87 |
+
"components": [
|
88 |
+
{
|
89 |
+
"type": "data",
|
90 |
+
"bom-ref": "squad-bfba1113-705c-51aa-a137-dd682ea9575a",
|
91 |
+
"name": "squad",
|
92 |
+
"data": [
|
93 |
+
{
|
94 |
+
"type": "dataset",
|
95 |
+
"bom-ref": "squad-bfba1113-705c-51aa-a137-dd682ea9575a",
|
96 |
+
"name": "squad",
|
97 |
+
"contents": {
|
98 |
+
"url": "https://huggingface.co/datasets/squad",
|
99 |
+
"properties": [
|
100 |
+
{
|
101 |
+
"name": "task_categories",
|
102 |
+
"value": "question-answering"
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"name": "task_ids",
|
106 |
+
"value": "extractive-qa"
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"name": "language",
|
110 |
+
"value": "en"
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"name": "size_categories",
|
114 |
+
"value": "10K<n<100K"
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"name": "annotations_creators",
|
118 |
+
"value": "crowdsourced"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"name": "language_creators",
|
122 |
+
"value": "crowdsourced, found"
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"name": "pretty_name",
|
126 |
+
"value": "SQuAD"
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"name": "source_datasets",
|
130 |
+
"value": "extended|wikipedia"
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"name": "paperswithcode_id",
|
134 |
+
"value": "squad"
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"name": "configs",
|
138 |
+
"value": "Name of the dataset subset: plain_text {\"split\": \"train\", \"path\": \"plain_text/train-*\"}, {\"split\": \"validation\", \"path\": \"plain_text/validation-*\"}"
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"name": "license",
|
142 |
+
"value": "cc-by-sa-4.0"
|
143 |
+
}
|
144 |
+
]
|
145 |
+
},
|
146 |
+
"governance": {
|
147 |
+
"owners": [
|
148 |
+
{
|
149 |
+
"organization": {
|
150 |
+
"name": "rajpurkar",
|
151 |
+
"url": "https://huggingface.co/rajpurkar"
|
152 |
+
}
|
153 |
+
}
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"description": "\n\t\n\t\t\n\t\tDataset Card for SQuAD\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\nSQuAD 1.1 contains 100,000+ question-answer pairs on 500+ articles.\n\n\t\n\t\t\n\t\tSupported Tasks and Leaderboards\n\t\n\nQuestion Answering.\u2026 See the full description on the dataset page: https://huggingface.co/datasets/rajpurkar/squad."
|
157 |
+
}
|
158 |
+
]
|
159 |
+
}
|
160 |
+
]
|
161 |
+
}
|