distilbert_distilbert-base-cased-distilled-squad.json ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bomFormat": "CycloneDX",
3
+ "specVersion": "1.6",
4
+ "serialNumber": "urn:uuid:2b114990-f3b1-410f-a8d4-d81d465f25d0",
5
+ "version": 1,
6
+ "metadata": {
7
+ "timestamp": "2025-06-05T09:42:15.918383+00:00",
8
+ "component": {
9
+ "type": "machine-learning-model",
10
+ "bom-ref": "distilbert/distilbert-base-cased-distilled-squad-1a73168b-1072-535e-9734-342d78002c07",
11
+ "name": "distilbert/distilbert-base-cased-distilled-squad",
12
+ "externalReferences": [
13
+ {
14
+ "url": "https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad",
15
+ "type": "documentation"
16
+ }
17
+ ],
18
+ "modelCard": {
19
+ "modelParameters": {
20
+ "task": "question-answering",
21
+ "architectureFamily": "distilbert",
22
+ "modelArchitecture": "DistilBertForQuestionAnswering",
23
+ "datasets": [
24
+ {
25
+ "ref": "squad-bfba1113-705c-51aa-a137-dd682ea9575a"
26
+ }
27
+ ]
28
+ },
29
+ "properties": [
30
+ {
31
+ "name": "library_name",
32
+ "value": "transformers"
33
+ }
34
+ ],
35
+ "quantitativeAnalysis": {
36
+ "performanceMetrics": [
37
+ {
38
+ "slice": "dataset: squad, split: validation, config: plain_text",
39
+ "type": "exact_match",
40
+ "value": 79.5998
41
+ },
42
+ {
43
+ "slice": "dataset: squad, split: validation, config: plain_text",
44
+ "type": "f1",
45
+ "value": 86.9965
46
+ }
47
+ ]
48
+ },
49
+ "consideration": {
50
+ "useCases": "This model can be used for question answering."
51
+ }
52
+ },
53
+ "authors": [
54
+ {
55
+ "name": "distilbert"
56
+ }
57
+ ],
58
+ "licenses": [
59
+ {
60
+ "license": {
61
+ "id": "Apache-2.0",
62
+ "url": "https://spdx.org/licenses/Apache-2.0.html"
63
+ }
64
+ }
65
+ ],
66
+ "description": "**Model Description:** The DistilBERT model was proposed in the blog post [Smaller, faster, cheaper, lighter: Introducing DistilBERT, adistilled version of BERT](https://medium.com/huggingface/distilbert-8cf3380435b5), and the paper [DistilBERT, adistilled version of BERT: smaller, faster, cheaper and lighter](https://arxiv.org/abs/1910.01108). DistilBERT is a small, fast, cheap and light Transformer model trained by distilling BERT base. It has 40% less parameters than *bert-base-uncased*, runs 60% faster while preserving over 95% of BERT's performances as measured on the GLUE language understanding benchmark.This model is a fine-tune checkpoint of [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased), fine-tuned using (a second step of) knowledge distillation on [SQuAD v1.1](https://huggingface.co/datasets/squad).- **Developed by:** Hugging Face- **Model Type:** Transformer-based language model- **Language(s):** English- **License:** Apache 2.0- **Related Models:** [DistilBERT-base-cased](https://huggingface.co/distilbert-base-cased)- **Resources for more information:**- See [this repository](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) for more about Distil\\* (a class of compressed models including this model)- See [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) for more information about knowledge distillation and the training procedure",
67
+ "tags": [
68
+ "transformers",
69
+ "pytorch",
70
+ "tf",
71
+ "rust",
72
+ "safetensors",
73
+ "openvino",
74
+ "distilbert",
75
+ "question-answering",
76
+ "en",
77
+ "dataset:squad",
78
+ "arxiv:1910.01108",
79
+ "arxiv:1910.09700",
80
+ "license:apache-2.0",
81
+ "model-index",
82
+ "endpoints_compatible",
83
+ "region:us"
84
+ ]
85
+ }
86
+ },
87
+ "components": [
88
+ {
89
+ "type": "data",
90
+ "bom-ref": "squad-bfba1113-705c-51aa-a137-dd682ea9575a",
91
+ "name": "squad",
92
+ "data": [
93
+ {
94
+ "type": "dataset",
95
+ "bom-ref": "squad-bfba1113-705c-51aa-a137-dd682ea9575a",
96
+ "name": "squad",
97
+ "contents": {
98
+ "url": "https://huggingface.co/datasets/squad",
99
+ "properties": [
100
+ {
101
+ "name": "task_categories",
102
+ "value": "question-answering"
103
+ },
104
+ {
105
+ "name": "task_ids",
106
+ "value": "extractive-qa"
107
+ },
108
+ {
109
+ "name": "language",
110
+ "value": "en"
111
+ },
112
+ {
113
+ "name": "size_categories",
114
+ "value": "10K<n<100K"
115
+ },
116
+ {
117
+ "name": "annotations_creators",
118
+ "value": "crowdsourced"
119
+ },
120
+ {
121
+ "name": "language_creators",
122
+ "value": "crowdsourced, found"
123
+ },
124
+ {
125
+ "name": "pretty_name",
126
+ "value": "SQuAD"
127
+ },
128
+ {
129
+ "name": "source_datasets",
130
+ "value": "extended|wikipedia"
131
+ },
132
+ {
133
+ "name": "paperswithcode_id",
134
+ "value": "squad"
135
+ },
136
+ {
137
+ "name": "configs",
138
+ "value": "Name of the dataset subset: plain_text {\"split\": \"train\", \"path\": \"plain_text/train-*\"}, {\"split\": \"validation\", \"path\": \"plain_text/validation-*\"}"
139
+ },
140
+ {
141
+ "name": "license",
142
+ "value": "cc-by-sa-4.0"
143
+ }
144
+ ]
145
+ },
146
+ "governance": {
147
+ "owners": [
148
+ {
149
+ "organization": {
150
+ "name": "rajpurkar",
151
+ "url": "https://huggingface.co/rajpurkar"
152
+ }
153
+ }
154
+ ]
155
+ },
156
+ "description": "\n\t\n\t\t\n\t\tDataset Card for SQuAD\n\t\n\n\n\t\n\t\t\n\t\tDataset Summary\n\t\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.\nSQuAD 1.1 contains 100,000+ question-answer pairs on 500+ articles.\n\n\t\n\t\t\n\t\tSupported Tasks and Leaderboards\n\t\n\nQuestion Answering.\u2026 See the full description on the dataset page: https://huggingface.co/datasets/rajpurkar/squad."
157
+ }
158
+ ]
159
+ }
160
+ ]
161
+ }