train_dit02_initials_3cat_cls_3.5k_naflex

This model is a fine-tuned version of google/siglip2-so400m-patch16-naflex on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2541
  • Accuracy: 0.6474
  • Precision: 0.6451
  • Recall: 0.6474
  • F1: 0.6312
  • Roc Auc: 0.7542

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 1337
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
0.1606 2.0833 100 0.2993 0.6530 0.6537 0.6530 0.6395 0.7772
0.0511 4.1667 200 0.6150 0.6101 0.6770 0.6101 0.6038 0.7704
0.0104 6.25 300 0.7966 0.6549 0.6360 0.6549 0.6394 0.7630
0.0114 8.3333 400 0.9993 0.6604 0.6599 0.6604 0.6489 0.7559
0.0016 10.4167 500 1.2927 0.6530 0.6350 0.6530 0.6267 0.7524
0.0002 12.5 600 1.4876 0.6287 0.6400 0.6287 0.6162 0.7600
0.0 14.5833 700 2.0675 0.6455 0.6336 0.6455 0.6271 0.7547
0.0 16.6667 800 2.1974 0.6493 0.6390 0.6493 0.6305 0.7562
0.0 18.75 900 2.2512 0.6493 0.6473 0.6493 0.6331 0.7541

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
27
Safetensors
Model size
428M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for distill-lab/train_dit02_initials_3cat_cls_3.5k_naflex

Finetuned
(2)
this model