LeRobot documentation

HopeJR

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

HopeJR

Prerequisites

Install LeRobot

Follow the installation instructions to install LeRobot.

Install LeRobot with HopeJR dependencies:

pip install -e ".[hopejr]"

Device Configuration

Before starting calibration and operation, you need to identify the USB ports for each HopeJR component. Run this script to find the USB ports for the arm, hand, glove, and exoskeleton:

python -m lerobot.find_port

This will display the available USB ports and their associated devices. Make note of the port paths (e.g., /dev/tty.usbmodem58760433331, /dev/tty.usbmodem11301) as you’ll need to specify them in the --robot.port and --teleop.port parameters when recording data, replaying episodes, or running teleoperation scripts.

Step 1: Calibration

Before performing teleoperation, HopeJR’s limbs need to be calibrated. Calibration files will be saved in ~/.cache/huggingface/lerobot/calibration

1.1 Calibrate Robot Hand

python -m lerobot.calibrate \
    --robot.type=hope_jr_hand \
    --robot.port=/dev/tty.usbmodem58760432281 \
    --robot.id=blue \
    --robot.side=right

When running the calibration script, a calibration GUI will pop up. Finger joints are named as follows:

Thumb:

  • CMC: base joint connecting thumb to hand
  • MCP: knuckle joint
  • PIP: first finger joint
  • DIP : fingertip joint

Index, Middle, Ring, and Pinky fingers:

  • Radial flexor: Moves base of finger towards the thumb
  • Ulnar flexor: Moves base of finger towards the pinky
  • PIP/DIP: Flexes the distal and proximal phalanx of the finger

Each one of these will need to be calibrated individually via the GUI. Note that ulnar and radial flexors should have ranges of the same size (but with different offsets) in order to get symmetric movement.

Setting boundaries in the hand calibration GUI

Use the calibration interface to set the range boundaries for each joint as shown above.

Saving calibration values

Once you have set the appropriate boundaries for all joints, click “Save” to save the calibration values to the motors.

1.2 Calibrate Teleoperator Glove

python -m lerobot.calibrate \
    --teleop.type=homunculus_glove \
    --teleop.port=/dev/tty.usbmodem11201 \
    --teleop.id=red \
    --teleop.side=right

Move each finger through its full range of motion, starting from the thumb.

Move thumb through its entire range of motion.
Recording positions. Press ENTER to stop...

-------------------------------------------
NAME      |    MIN |    POS |    MAX
thumb_cmc |   1790 |   1831 |   1853
thumb_mcp |   1497 |   1514 |   1528
thumb_pip |   1466 |   1496 |   1515
thumb_dip |   1463 |   1484 |   1514

Continue with each finger:

Move middle through its entire range of motion.
Recording positions. Press ENTER to stop...

-------------------------------------------
NAME                 |    MIN |    POS |    MAX
middle_mcp_abduction |   1598 |   1718 |   1820
middle_mcp_flexion   |   1512 |   1658 |   2136
middle_dip           |   1484 |   1500 |   1547

Once calibration is complete, the system will save the calibration to /Users/your_username/.cache/huggingface/lerobot/calibration/teleoperators/homunculus_glove/red.json

1.3 Calibrate Robot Arm

python -m lerobot.calibrate \
    --robot.type=hope_jr_arm \
    --robot.port=/dev/tty.usbserial-1110 \
    --robot.id=white

This will open a calibration GUI where you can set the range limits for each motor. The arm motions are organized as follows:

  • Shoulder: pitch, yaw, and roll
  • Elbow: flex
  • Wrist: pitch, yaw, and roll

Setting boundaries in the arm calibration GUI

Use the calibration interface to set the range boundaries for each joint. Move each joint through its full range of motion and adjust the minimum and maximum values accordingly. Once you have set the appropriate boundaries for all joints, save the calibration.

1.4 Calibrate Teleoperator Exoskeleton

python -m lerobot.calibrate \
    --teleop.type=homunculus_arm \
    --teleop.port=/dev/tty.usbmodem11201 \
    --teleop.id=black

The exoskeleton allows one to control the robot arm. During calibration, you’ll be prompted to move all joints through their full range of motion:

Move all joints through their entire range of motion.
Recording positions. Press ENTER to stop...

-------------------------------------------
-------------------------------------------
NAME            |    MIN |    POS |    MAX
shoulder_pitch  |    586 |    736 |    895
shoulder_yaw    |   1257 |   1374 |   1390
shoulder_roll   |    449 |   1034 |   2564
elbow_flex      |   3023 |   3117 |   3134
wrist_roll      |   3073 |   3096 |   3147
wrist_yaw       |   2143 |   2171 |   2185
wrist_pitch     |   1975 |   1993 |   2074
Calibration saved to /Users/your_username/.cache/huggingface/lerobot/calibration/teleoperators/homunculus_arm/black.json

Step 2: Teleoperation

Due to global variable conflicts in the Feetech middleware, teleoperation for arm and hand must run in separate shell sessions:

Hand

python -m lerobot.teleoperate \
    --robot.type=hope_jr_hand \
    --robot.port=/dev/tty.usbmodem58760432281 \
    --robot.id=blue \
    --robot.side=right \
    --teleop.type=homunculus_glove \
    --teleop.port=/dev/tty.usbmodem11201 \
    --teleop.id=red \
    --teleop.side=right \
    --display_data=true \
    --fps=30

Arm

python -m lerobot.teleoperate \
    --robot.type=hope_jr_arm \
    --robot.port=/dev/tty.usbserial-1110 \
    --robot.id=white \
    --teleop.type=homunculus_arm \
    --teleop.port=/dev/tty.usbmodem11201 \
    --teleop.id=black \
    --display_data=true \
    --fps=30

Step 3: Record, Replay, Train

Record, Replay and Train with Hope-JR is still experimental.

Record

This step records the dataset, which can be seen as an example here.

python -m lerobot.record \
    --robot.type=hope_jr_hand \
    --robot.port=/dev/tty.usbmodem58760432281 \
    --robot.id=right \
    --robot.side=right \
    --robot.cameras='{"main": {"type": "opencv", "index_or_path": 0, "width": 640, "height": 480, "fps": 30}}' \
    --teleop.type=homunculus_glove \
    --teleop.port=/dev/tty.usbmodem1201 \
    --teleop.id=right \
    --teleop.side=right \
    --dataset.repo_id=nepyope/hand_record_test_with_video_data \
    --dataset.single_task="Hand recording test with video data" \
    --dataset.num_episodes=1 \
    --dataset.episode_time_s=5 \
    --dataset.push_to_hub=true \
    --dataset.private=true \
    --display_data=true

Replay

python -m lerobot.replay \
    --robot.type=hope_jr_hand \
    --robot.port=/dev/tty.usbmodem58760432281 \
    --robot.id=right \
    --robot.side=right \
    --dataset.repo_id=nepyope/hand_record_test_with_camera \
    --dataset.episode=0

Train

python -m lerobot.scripts.train \
  --dataset.repo_id=nepyope/hand_record_test_with_video_data \
  --policy.type=act \
  --output_dir=outputs/train/hopejr_hand \
  --job_name=hopejr \
  --policy.device=mps \
  --wandb.enable=true \
  --policy.repo_id=nepyope/hand_test_policy

Evaluate

This training run can be viewed as an example here.

python -m lerobot.record \
  --robot.type=hope_jr_hand \
  --robot.port=/dev/tty.usbmodem58760432281 \
  --robot.id=right \
  --robot.side=right \
  --robot.cameras='{"main": {"type": "opencv", "index_or_path": 0, "width": 640, "height": 480, "fps": 30}}' \
  --display_data=false \
  --dataset.repo_id=nepyope/eval_hopejr \
  --dataset.single_task="Evaluate hopejr hand policy" \
  --dataset.num_episodes=10 \
  --policy.path=outputs/train/hopejr_hand/checkpoints/last/pretrained_model
< > Update on GitHub