smolagents documentation

Models

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Models

Smolagents is an experimental API which is subject to change at any time. Results returned by the agents can vary as the APIs or underlying models are prone to change.

To learn more about agents and tools make sure to read the introductory guide. This page contains the API docs for the underlying classes.

Models

You’re free to create and use your own models to power your agent.

You could use any model callable for your agent, as long as:

  1. It follows the messages format (List[Dict[str, str]]) for its input messages, and it returns a str.
  2. It stops generating outputs before the sequences passed in the argument stop_sequences

For defining your LLM, you can make a custom_model method which accepts a list of messages and returns an object with a .content attribute containing the text. This callable also needs to accept a stop_sequences argument that indicates when to stop generating.

from huggingface_hub import login, InferenceClient

login("<YOUR_HUGGINGFACEHUB_API_TOKEN>")

model_id = "meta-llama/Llama-3.3-70B-Instruct"

client = InferenceClient(model=model_id)

def custom_model(messages, stop_sequences=["Task"]):
    response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1024)
    answer = response.choices[0].message
    return answer

Additionally, custom_model can also take a grammar argument. In the case where you specify a grammar upon agent initialization, this argument will be passed to the calls to model, with the grammar that you defined upon initialization, to allow constrained generation in order to force properly-formatted agent outputs.

TransformersModel

For convenience, we have added a TransformersModel that implements the points above by building a local transformers pipeline for the model_id given at initialization.

from smolagents import TransformersModel

model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")

print(model([{"role": "user", "content": [{"type": "text", "text": "Ok!"}]}], stop_sequences=["great"]))
>>> What a

You must have transformers and torch installed on your machine. Please run pip install smolagents[transformers] if it’s not the case.

class smolagents.TransformersModel

< >

( model_id: typing.Optional[str] = None device_map: typing.Optional[str] = None torch_dtype: typing.Optional[str] = None trust_remote_code: bool = False **kwargs )

Parameters

  • model_id (str) — The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub. For example, "Qwen/Qwen2.5-Coder-32B-Instruct".
  • device_map (str, optional) — The device_map to initialize your model with.
  • torch_dtype (str, optional) — The torch_dtype to initialize your model with.
  • trust_remote_code (bool, default False) — Some models on the Hub require running remote code: for this model, you would have to set this flag to True.
  • kwargs (dict, optional) — Any additional keyword arguments that you want to use in model.generate(), for instance max_new_tokens or device.
  • **kwargs — Additional keyword arguments to pass to model.generate(), for instance max_new_tokens or device.

Raises

ValueError

  • ValueError — If the model name is not provided.

A class that uses Hugging Face’s Transformers library for language model interaction.

This model allows you to load and use Hugging Face’s models locally using the Transformers library. It supports features like stop sequences and grammar customization.

You must have transformers and torch installed on your machine. Please run pip install smolagents[transformers] if it’s not the case.

Example:

>>> engine = TransformersModel(
...     model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
...     device="cuda",
...     max_new_tokens=5000,
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."

InferenceClientModel

The HfApiModel wraps huggingface_hub’s InferenceClient for the execution of the LLM. It supports all Inference Providers available on the Hub: Cerebras, Cohere, Fal, Fireworks, HF-Inference, Hyperbolic, Nebius, Novita, Replicate, SambaNova, Together, and more.

from smolagents import InferenceClientModel

messages = [
  {"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
]

model = InferenceClientModel(provider="novita")
print(model(messages))
>>> Of course! If you change your mind, feel free to reach out. Take care!

class smolagents.InferenceClientModel

< >

( model_id: str = 'Qwen/Qwen2.5-Coder-32B-Instruct' provider: typing.Optional[str] = None token: typing.Optional[str] = None timeout: typing.Optional[int] = 120 client_kwargs: dict[str, typing.Any] | None = None custom_role_conversions: dict[str, str] | None = None api_key: typing.Optional[str] = None **kwargs )

Parameters

  • model_id (str, optional, default "Qwen/Qwen2.5-Coder-32B-Instruct") — The Hugging Face model ID to be used for inference. This can be a model identifier from the Hugging Face model hub or a URL to a deployed Inference Endpoint. Currently, it defaults to "Qwen/Qwen2.5-Coder-32B-Instruct", but this may change in the future.
  • provider (str, optional) — Name of the provider to use for inference. Can be "black-forest-labs", "cerebras", "cohere", "fal-ai", "fireworks-ai", "hf-inference", "hyperbolic", "nebius", "novita", "openai", "replicate", “sambanova”, “together”`, etc. Currently, it defaults to hf-inference (HF Inference API).
  • token (str, optional) — Token used by the Hugging Face API for authentication. This token need to be authorized ‘Make calls to the serverless Inference Providers’. If the model is gated (like Llama-3 models), the token also needs ‘Read access to contents of all public gated repos you can access’. If not provided, the class will try to use environment variable ‘HF_TOKEN’, else use the token stored in the Hugging Face CLI configuration.
  • timeout (int, optional, defaults to 120) — Timeout for the API request, in seconds.
  • client_kwargs (dict[str, Any], optional) — Additional keyword arguments to pass to the Hugging Face InferenceClient.
  • custom_role_conversions (dict[str, str], optional) — Custom role conversion mapping to convert message roles in others. Useful for specific models that do not support specific message roles like “system”.
  • api_key (str, optional) — Token to use for authentication. This is a duplicated argument from token to make InferenceClientModel follow the same pattern as openai.OpenAI client. Cannot be used if token is set. Defaults to None.
  • **kwargs — Additional keyword arguments to pass to the Hugging Face API.

Raises

ValueError

  • ValueError — If the model name is not provided.

A class to interact with Hugging Face’s Inference Providers for language model interaction.

This model allows you to communicate with Hugging Face’s models using Inference Providers. It can be used in both serverless mode or with a dedicated endpoint, supporting features like stop sequences and grammar customization.

Providers include Cerebras, Cohere, Fal, Fireworks, HF-Inference, Hyperbolic, Nebius, Novita, Replicate, SambaNova, Together, and more.

Example:

>>> engine = InferenceClientModel(
...     model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
...     provider="together",
...     token="your_hf_token_here",
...     max_tokens=5000,
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."

create_client

< >

( )

Create the Hugging Face client.

LiteLLMModel

The LiteLLMModel leverages LiteLLM to support 100+ LLMs from various providers. You can pass kwargs upon model initialization that will then be used whenever using the model, for instance below we pass temperature.

from smolagents import LiteLLMModel

messages = [
  {"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
]

model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=10)
print(model(messages))

class smolagents.LiteLLMModel

< >

( model_id: typing.Optional[str] = None api_base = None api_key = None custom_role_conversions: dict[str, str] | None = None flatten_messages_as_text: bool | None = None **kwargs )

Parameters

  • model_id (str) — The model identifier to use on the server (e.g. “gpt-3.5-turbo”).
  • api_base (str, optional) — The base URL of the provider API to call the model.
  • api_key (str, optional) — The API key to use for authentication.
  • custom_role_conversions (dict[str, str], optional) — Custom role conversion mapping to convert message roles in others. Useful for specific models that do not support specific message roles like “system”.
  • flatten_messages_as_text (bool, optional) — Whether to flatten messages as text. Defaults to True for models that start with “ollama”, “groq”, “cerebras”.
  • **kwargs — Additional keyword arguments to pass to the OpenAI API.

Model to use LiteLLM Python SDK to access hundreds of LLMs.

create_client

< >

( )

Create the LiteLLM client.

OpenAIServerModel

This class lets you call any OpenAIServer compatible model. Here’s how you can set it (you can customise the api_base url to point to another server):

import os
from smolagents import OpenAIServerModel

model = OpenAIServerModel(
    model_id="gpt-4o",
    api_base="https://api.openai.com/v1",
    api_key=os.environ["OPENAI_API_KEY"],
)

class smolagents.OpenAIServerModel

< >

( model_id: str api_base: typing.Optional[str] = None api_key: typing.Optional[str] = None organization: typing.Optional[str] = None project: typing.Optional[str] = None client_kwargs: dict[str, typing.Any] | None = None custom_role_conversions: dict[str, str] | None = None flatten_messages_as_text: bool = False **kwargs )

Parameters

  • model_id (str) — The model identifier to use on the server (e.g. “gpt-3.5-turbo”).
  • api_base (str, optional) — The base URL of the OpenAI-compatible API server.
  • api_key (str, optional) — The API key to use for authentication.
  • organization (str, optional) — The organization to use for the API request.
  • project (str, optional) — The project to use for the API request.
  • client_kwargs (dict[str, Any], optional) — Additional keyword arguments to pass to the OpenAI client (like organization, project, max_retries etc.).
  • custom_role_conversions (dict[str, str], optional) — Custom role conversion mapping to convert message roles in others. Useful for specific models that do not support specific message roles like “system”.
  • flatten_messages_as_text (bool, default False) — Whether to flatten messages as text.
  • **kwargs — Additional keyword arguments to pass to the OpenAI API.

This model connects to an OpenAI-compatible API server.

AzureOpenAIServerModel

AzureOpenAIServerModel allows you to connect to any Azure OpenAI deployment.

Below you can find an example of how to set it up, note that you can omit the azure_endpoint, api_key, and api_version arguments, provided you’ve set the corresponding environment variables — AZURE_OPENAI_ENDPOINT, AZURE_OPENAI_API_KEY, and OPENAI_API_VERSION.

Pay attention to the lack of an AZURE_ prefix for OPENAI_API_VERSION, this is due to the way the underlying openai package is designed.

import os

from smolagents import AzureOpenAIServerModel

model = AzureOpenAIServerModel(
    model_id = os.environ.get("AZURE_OPENAI_MODEL"),
    azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
    api_key=os.environ.get("AZURE_OPENAI_API_KEY"),
    api_version=os.environ.get("OPENAI_API_VERSION")    
)

class smolagents.AzureOpenAIServerModel

< >

( model_id: str azure_endpoint: typing.Optional[str] = None api_key: typing.Optional[str] = None api_version: typing.Optional[str] = None client_kwargs: dict[str, typing.Any] | None = None custom_role_conversions: dict[str, str] | None = None **kwargs )

Parameters

  • model_id (str) — The model deployment name to use when connecting (e.g. “gpt-4o-mini”).
  • azure_endpoint (str, optional) — The Azure endpoint, including the resource, e.g. https://example-resource.azure.openai.com/. If not provided, it will be inferred from the AZURE_OPENAI_ENDPOINT environment variable.
  • api_key (str, optional) — The API key to use for authentication. If not provided, it will be inferred from the AZURE_OPENAI_API_KEY environment variable.
  • api_version (str, optional) — The API version to use. If not provided, it will be inferred from the OPENAI_API_VERSION environment variable.
  • client_kwargs (dict[str, Any], optional) — Additional keyword arguments to pass to the AzureOpenAI client (like organization, project, max_retries etc.).
  • custom_role_conversions (dict[str, str], optional) — Custom role conversion mapping to convert message roles in others. Useful for specific models that do not support specific message roles like “system”.
  • **kwargs — Additional keyword arguments to pass to the Azure OpenAI API.

This model connects to an Azure OpenAI deployment.

AmazonBedrockServerModel

AmazonBedrockServerModel helps you connect to Amazon Bedrock and run your agent with any available models.

Below is an example setup. This class also offers additional options for customization.

import os

from smolagents import AmazonBedrockServerModel

model = AmazonBedrockServerModel(
    model_id = os.environ.get("AMAZON_BEDROCK_MODEL_ID"),
)

class smolagents.AmazonBedrockServerModel

< >

( model_id: str client = None client_kwargs: dict[str, typing.Any] | None = None custom_role_conversions: dict[str, str] | None = None **kwargs )

Parameters

  • model_id (str) — The model identifier to use on Bedrock (e.g. “us.amazon.nova-pro-v1:0”).
  • client (boto3.client, optional) — A custom boto3 client for AWS interactions. If not provided, a default client will be created.
  • client_kwargs (dict[str, Any], optional) — Keyword arguments used to configure the boto3 client if it needs to be created internally. Examples include region_name, config, or endpoint_url.
  • custom_role_conversions (dict[str, str], optional) — Custom role conversion mapping to convert message roles in others. Useful for specific models that do not support specific message roles like “system”. Defaults to converting all roles to “user” role to enable using all the Bedrock models.
  • flatten_messages_as_text (bool, default False) — Whether to flatten messages as text.
  • **kwargs — Additional keyword arguments passed directly to the underlying API calls.

A model class for interacting with Amazon Bedrock Server models through the Bedrock API.

This class provides an interface to interact with various Bedrock language models, allowing for customized model inference, guardrail configuration, message handling, and other parameters allowed by boto3 API.

Example: Creating a model instance with default settings:

bedrock_model = AmazonBedrockServerModel( … model_id=‘us.amazon.nova-pro-v1:0’ … )

Creating a model instance with a custom boto3 client:

import boto3 client = boto3.client(‘bedrock-runtime’, region_name=‘us-west-2’) bedrock_model = AmazonBedrockServerModel( … model_id=‘us.amazon.nova-pro-v1:0’, … client=client … )

Creating a model instance with client_kwargs for internal client creation:

bedrock_model = AmazonBedrockServerModel( … model_id=‘us.amazon.nova-pro-v1:0’, … client_kwargs={‘region_name’: ‘us-west-2’, ‘endpoint_url’: ’https://custom-endpoint.com’} … )

Creating a model instance with inference and guardrail configurations:

additional_api_config = { … “inferenceConfig”: { … “maxTokens”: 3000 … }, … “guardrailConfig”: { … “guardrailIdentifier”: “identify1”, … “guardrailVersion”: ‘v1’ … }, … } bedrock_model = AmazonBedrockServerModel( … model_id=‘anthropic.claude-3-haiku-20240307-v1:0’, … **additional_api_config … )

MLXModel

from smolagents import MLXModel

model = MLXModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")

print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"]))
>>> What a

You must have mlx-lm installed on your machine. Please run pip install smolagents[mlx-lm] if it’s not the case.

class smolagents.MLXModel

< >

( model_id: str tool_name_key: str = 'name' tool_arguments_key: str = 'arguments' trust_remote_code: bool = False **kwargs )

Parameters

  • model_id (str) — The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
  • tool_name_key (str) — The key, which can usually be found in the model’s chat template, for retrieving a tool name.
  • tool_arguments_key (str) — The key, which can usually be found in the model’s chat template, for retrieving tool arguments.
  • trust_remote_code (bool) — Some models on the Hub require running remote code: for this model, you would have to set this flag to True.
  • kwargs (dict, optional) — Any additional keyword arguments that you want to use in model.generate(), for instance max_tokens.

A class to interact with models loaded using MLX on Apple silicon.

You must have mlx-lm installed on your machine. Please run pip install smolagents[mlx-lm] if it’s not the case.

Example:

>>> engine = MLXModel(
...     model_id="mlx-community/Qwen2.5-Coder-32B-Instruct-4bit",
...     max_tokens=10000,
... )
>>> messages = [
...     {
...         "role": "user",
...         "content": [
...             {"type": "text", "text": "Explain quantum mechanics in simple terms."}
...         ]
...     }
... ]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."

VLLMModel

Model to use vLLM for fast LLM inference and serving.

from smolagents import VLLMModel

model = VLLMModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")

print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"]))

You must have vllm installed on your machine. Please run pip install smolagents[vllm] if it’s not the case.

class smolagents.VLLMModel

< >

( model_id model_kwargs: dict[str, typing.Any] | None = None **kwargs )

Parameters

  • model_id (str) — The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
  • model_kwargs (dict[str, Any], optional) — Additional keyword arguments to pass to the vLLM model (like revision, max_model_len, etc.).

Model to use vLLM for fast LLM inference and serving.

< > Update on GitHub