text-generation-inference documentation

Llamacpp Backend

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Llamacpp Backend

The llamacpp backend facilitates the deployment of large language models (LLMs) by integrating llama.cpp, an advanced inference engine optimized for both CPU and GPU computation. This backend is a component of Hugging Face’s Text Generation Inference (TGI) suite, specifically designed to streamline the deployment of LLMs in production environments.

Key Capabilities

  • Full compatibility with GGUF format and all quantization formats (GGUF-related constraints may be mitigated dynamically by on-the-fly generation in future updates)
  • Optimized inference on CPU and GPU architectures
  • Containerized deployment, eliminating dependency complexity
  • Seamless interoperability with the Hugging Face ecosystem

Model Compatibility

This backend leverages models formatted in GGUF, providing an optimized balance between computational efficiency and model accuracy. You will find the best models on Hugging Face.

Build Docker image

For optimal performance, the Docker image is compiled with native CPU instructions, thus it’s highly recommended to execute the container on the host used during the build process. Efforts are ongoing to enhance portability while maintaining high computational efficiency.

docker build \
    -t tgi-llamacpp \
    https://github.com/huggingface/text-generation-inference.git \
    -f Dockerfile_llamacpp

Build parameters

Parameter Description
--build-arg llamacpp_version=bXXXX Specific version of llama.cpp
--build-arg llamacpp_cuda=ON Enables CUDA acceleration
--build-arg cuda_arch=ARCH Defines target CUDA architecture

Model preparation

Retrieve a GGUF model and store it in a specific directory, for example:

mkdir -p ~/models
cd ~/models
curl -LOJ "https://huggingface.co/Qwen/Qwen2.5-3B-Instruct-GGUF/resolve/main/qwen2.5-3b-instruct-q4_0.gguf?download=true"

Run Docker image

CPU-based inference

docker run \
    -p 3000:3000 \
    -e "HF_TOKEN=$HF_TOKEN" \
    -v "$HOME/models:/models" \
    tgi-llamacpp \
    --model-id "Qwen/Qwen2.5-3B-Instruct" \
    --model-gguf "/models/qwen2.5-3b-instruct-q4_0.gguf"

GPU-Accelerated inference

docker run \
    --gpus all \
    -p 3000:3000 \
    -e "HF_TOKEN=$HF_TOKEN" \
    -v "$HOME/models:/models" \
    tgi-llamacpp \
    --n-gpu-layers 99
    --model-id "Qwen/Qwen2.5-3B-Instruct" \
    --model-gguf "/models/qwen2.5-3b-instruct-q4_0.gguf"

Advanced parameters

A full listing of configurable parameters is available in the --help:

docker run tgi-llamacpp --help

The table below summarizes key options:

Parameter Description
--n-threads Number of threads to use for generation
--n-threads-batch Number of threads to use for batch processing
--n-gpu-layers Number of layers to store in VRAM
--split-mode Split the model across multiple GPUs
--defrag-threshold Defragment the KV cache if holes/size > threshold
--numa Enable NUMA optimizations
--use-mmap Use memory mapping for the model
--use-mlock Use memory locking to prevent swapping
--offload-kqv Enable offloading of KQV operations to the GPU
--flash-attention Enable flash attention for faster inference
--type-k Data type used for K cache
--type-v Data type used for V cache
--validation-workers Number of tokenizer workers used for payload validation and truncation
--max-concurrent-requests Maximum number of concurrent requests
--max-input-tokens Maximum number of input tokens per request
--max-total-tokens Maximum number of total tokens (input + output) per request
--max-batch-total-tokens Maximum number of tokens in a batch
--max-physical-batch-total-tokens Maximum number of tokens in a physical batch
--max-batch-size Maximum number of requests per batch

< > Update on GitHub