Text-to-3D
uni-3dar

Add pipeline tag and library name; include sample usage from Github

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -1,5 +1,7 @@
1
  ---
2
  license: mit
 
 
3
  ---
4
 
5
  Uni-3DAR
@@ -9,6 +11,9 @@ Uni-3DAR
9
  Introduction
10
  ------------
11
 
 
 
 
12
  Uni-3DAR is an autoregressive model that unifies various 3D tasks. In particular, it offers the following improvements:
13
 
14
  1. **Unified Handling of Multiple 3D Data Types.**
@@ -23,11 +28,63 @@ Uni-3DAR is an autoregressive model that unifies various 3D tasks. In particular
23
  4. **High Accuracy.**
24
  Building on octree compression, Uni-3DAR further tokenizes fine-grained 3D patches to maintain structural details, achieving substantially better generation quality than previous diffusion-based models.
25
 
26
- Usage
27
- -----
28
 
29
- Please visit our GitHub Repo (https://github.com/dptech-corp/Uni-3DAR) for detailed instructions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
 
 
 
32
 
 
33
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ library_name: transformers
4
+ pipeline_tag: text-to-3d
5
  ---
6
 
7
  Uni-3DAR
 
11
  Introduction
12
  ------------
13
 
14
+ <p align="center"><img src="fig/overview.png" width=95%></p>
15
+ <p align="center"><b>Schematic illustration of the Uni-3DAR framework</b></p>
16
+
17
  Uni-3DAR is an autoregressive model that unifies various 3D tasks. In particular, it offers the following improvements:
18
 
19
  1. **Unified Handling of Multiple 3D Data Types.**
 
28
  4. **High Accuracy.**
29
  Building on octree compression, Uni-3DAR further tokenizes fine-grained 3D patches to maintain structural details, achieving substantially better generation quality than previous diffusion-based models.
30
 
 
 
31
 
32
+ News
33
+ ----
34
+
35
+ **2025-03-21:** We have released the core model along with the QM9 training and inference pipeline.
36
+
37
+
38
+ Dependencies
39
+ ------------
40
+
41
+ - [Uni-Core](https://github.com/dptech-corp/Uni-Core). For convenience, you can use our prebuilt Docker image:
42
+ `docker pull dptechnology/unicore:2407-pytorch2.4.0-cuda12.5-rdma`
43
+
44
+
45
+ Reproducing Results on QM9
46
+ --------------------------
47
+
48
+ To reproduce results on the QM9 dataset using our pretrained model or train from scratch, please follow the instructions below.
49
+
50
+ ### Download Pretrained Model and Dataset
51
+
52
+ Download the pretrained checkpoint (`qm9.pt`) and the dataset archive (`qm9_data.tar.gz`) from our [Hugging Face repository](https://huggingface.co/dptech/Uni-3DAR/tree/main).
53
+
54
+ ### Inference with Pretrained Model
55
+
56
+ To generate QM9 molecules using the pretrained model:
57
+
58
+ ```
59
+ bash inference_qm9.sh qm9.pt
60
+ ```
61
+
62
+ ### Train from Scratch
63
+
64
+ To train the model from scratch:
65
+
66
+ 1. Extract the dataset:
67
+ ```
68
+ tar -xzvf qm9_data.tar.gz
69
+ ```
70
+
71
+ 2. Run the training script with your desired data path and experiment name:
72
+
73
+ ```
74
+ base_dir=/your_folder_to_save/ bash train_qm9.sh ./qm9_data/ name_of_your_exp
75
+ ```
76
 
77
 
78
+ Citation
79
+ --------
80
 
81
+ Please kindly cite our papers if you use the data/code/model.
82
 
83
+ ```
84
+ @article{lu2025uni3dar,
85
+ author = {Shuqi Lu and Haowei Lin and Lin Yao and Zhifeng Gao and Xiaohong Ji and Weinan E and Linfeng Zhang and Guolin Ke},
86
+ title = {Uni-3DAR: Unified 3D Generation and Understanding via Autoregression on Compressed Spatial Tokens},
87
+ journal = {Arxiv},
88
+ year = {2025},
89
+ }
90
+ ```