w2v-bert-2.0-lwazi-gpu

This model is a fine-tuned version of facebook/w2v-bert-2.0 on a multilingual Lwazi dataset. It achieves the following results on the evaluation set:

  • Loss: 66.8561
  • Wer: 0.4472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
274.7911 0.0848 200 190.5785 0.9105
125.3483 0.1697 400 122.7743 0.7101
107.2834 0.2545 600 100.6818 0.6027
91.1629 0.3393 800 88.3333 0.5560
90.386 0.4242 1000 81.7339 0.5223
79.5318 0.5090 1200 77.8670 0.5000
76.4624 0.5938 1400 73.4570 0.4830
77.446 0.6787 1600 69.9153 0.4550
73.0826 0.7635 1800 68.6940 0.4572
67.0382 0.8484 2000 66.8561 0.4472

Framework versions

  • Transformers 4.52.0
  • Pytorch 2.8.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
23
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dsfsi/w2v-bert-2.0-lwazi-gpu

Finetuned
(357)
this model