w2v-bert-2.0-lwazi-gpu
This model is a fine-tuned version of facebook/w2v-bert-2.0 on a multilingual Lwazi dataset. It achieves the following results on the evaluation set:
- Loss: 66.8561
- Wer: 0.4472
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
274.7911 | 0.0848 | 200 | 190.5785 | 0.9105 |
125.3483 | 0.1697 | 400 | 122.7743 | 0.7101 |
107.2834 | 0.2545 | 600 | 100.6818 | 0.6027 |
91.1629 | 0.3393 | 800 | 88.3333 | 0.5560 |
90.386 | 0.4242 | 1000 | 81.7339 | 0.5223 |
79.5318 | 0.5090 | 1200 | 77.8670 | 0.5000 |
76.4624 | 0.5938 | 1400 | 73.4570 | 0.4830 |
77.446 | 0.6787 | 1600 | 69.9153 | 0.4550 |
73.0826 | 0.7635 | 1800 | 68.6940 | 0.4572 |
67.0382 | 0.8484 | 2000 | 66.8561 | 0.4472 |
Framework versions
- Transformers 4.52.0
- Pytorch 2.8.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 23
Model tree for dsfsi/w2v-bert-2.0-lwazi-gpu
Base model
facebook/w2v-bert-2.0