π· AuraFace-RKNN β Face Recognition Model for RK3588 π¦ Format: .rknn π― Purpose: Extract 512-dim facial embeddings π§ Architecture: ResNet100 + ArcFace π Target: Rockchip RK3588 NPU
π₯ Source Base ONNX model: fal/AuraFace-v1
Repository: fal/AuraFace-v1
Conversion done using: rknn-toolkit2
π§ How this was converted Downloaded glintr100.onnx from fal/AuraFace-v1
Quantized using 50 face images from mwong/faces
Converted to .rknn using rknn.build(...) with int8 quantization
βοΈ Inference Example
from rknn.api import RKNN import numpy as np import cv2
rknn = RKNN() rknn.load_rknn('auraface.rknn') rknn.init_runtime(target='rk3588')
Prepare input image (BGR, 112x112)
img = cv2.imread('face.jpg') img = cv2.resize(img, (112, 112)) img = img.transpose(2, 0, 1)[np.newaxis, :] # Shape: [1, 3, 112, 112]
Run inference
outputs = rknn.inference(inputs=[img]) embedding = outputs[0][0]
Normalize embedding (recommended for comparison)
embedding /= np.linalg.norm(embedding) π§ͺ Output 512-dimensional float32 embedding vector
Ready for face similarity checks (e.g. cosine or L2 distance)
π License Based on the license of the upstream model (Apache 2.0 or equivalent from fal/AuraFace-v1).
π About this repository This RKNN version was built for Rockchip RK3588-based devices (e.g. Orange Pi 5 Pro) to enable fast and efficient on-device face recognition using NPU.
Model tree for dulimov/AuraFace-v1-rk3588
Base model
fal/AuraFace-v1