detr-resnet-50-dc5-ordd2024-finetuned

This model is a fine-tuned version of facebook/detr-resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0037
  • Map: 0.0003
  • Map 50: 0.0011
  • Map 75: 0.0001
  • Map Small: 0.0125
  • Map Medium: 0.0
  • Map Large: 0.001
  • Mar 1: 0.0
  • Mar 10: 0.0132
  • Mar 100: 0.1132
  • Mar Small: 0.025
  • Mar Medium: 0.05
  • Mar Large: 0.1435
  • Map Longitudinal Crack: 0.0003
  • Mar 100 Longitudinal Crack: 0.0526
  • Map Transverse Crack: -1.0
  • Mar 100 Transverse Crack: -1.0
  • Map Aligator Crack: 0.0009
  • Mar 100 Aligator Crack: 0.4
  • Map Pothole: 0.0
  • Mar 100 Pothole: 0.0
  • Map Other Corruptions: 0.0
  • Mar 100 Other Corruptions: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Longitudinal Crack Mar 100 Longitudinal Crack Map Transverse Crack Mar 100 Transverse Crack Map Aligator Crack Mar 100 Aligator Crack Map Pothole Mar 100 Pothole Map Other Corruptions Mar 100 Other Corruptions
No log 1.0 174 3.9597 0.0001 0.0006 0.0001 0.0 0.0 0.0007 0.0 0.0161 0.0341 0.0 0.0 0.0864 0.0004 0.0421 -1.0 -1.0 0.0001 0.0722 0.0 0.0222 0.0 0.0
No log 2.0 348 2.4478 0.0004 0.0034 0.0 0.0 0.0 0.0013 0.0 0.0039 0.0762 0.0 0.0 0.092 0.0012 0.0158 -1.0 -1.0 0.0006 0.2889 0.0 0.0 0.0 0.0
3.3803 3.0 522 2.1677 0.0001 0.0004 0.0 0.0 0.0001 0.0005 0.0 0.0055 0.0686 0.0 0.0179 0.0824 0.0001 0.0579 -1.0 -1.0 0.0004 0.2167 0.0 0.0 0.0 0.0
3.3803 4.0 696 2.1413 0.0002 0.0006 0.0001 0.0 0.0 0.0007 0.0 0.0066 0.0842 0.0 0.0071 0.1022 0.0001 0.0368 -1.0 -1.0 0.0006 0.3 0.0 0.0 0.0 0.0
3.3803 5.0 870 2.0419 0.0002 0.0008 0.0 0.0 0.0 0.0015 0.0 0.008 0.0871 0.0 0.0 0.1085 0.0001 0.0263 -1.0 -1.0 0.0008 0.3222 0.0 0.0 0.0 0.0
2.2481 6.0 1044 1.9375 0.0002 0.0006 0.0001 0.0 0.0 0.0008 0.0 0.0107 0.0843 0.0 0.0 0.1074 0.0001 0.0316 -1.0 -1.0 0.0006 0.3056 0.0 0.0 0.0 0.0
2.2481 7.0 1218 1.9988 0.0001 0.0005 0.0001 0.0 0.0 0.0005 0.0 0.0066 0.0885 0.0 0.0 0.11 0.0001 0.0263 -1.0 -1.0 0.0005 0.3278 0.0 0.0 0.0 0.0
2.2481 8.0 1392 2.0228 0.0002 0.0008 0.0001 0.0125 0.0 0.0008 0.0 0.0132 0.098 0.025 0.0 0.1275 0.0002 0.0474 -1.0 -1.0 0.0007 0.3444 0.0 0.0 0.0 0.0
2.1491 9.0 1566 1.9563 0.0002 0.0007 0.0002 0.0 0.0 0.0008 0.0 0.004 0.1012 0.0 0.0 0.1181 0.0002 0.0105 -1.0 -1.0 0.0008 0.3944 0.0 0.0 0.0 0.0
2.1491 10.0 1740 2.0037 0.0003 0.0011 0.0001 0.0125 0.0 0.001 0.0 0.0132 0.1132 0.025 0.05 0.1435 0.0003 0.0526 -1.0 -1.0 0.0009 0.4 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
41.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for duongng2911/detr-resnet-50-dc5-ordd2024-finetuned

Finetuned
(574)
this model