Quantizations of https://huggingface.co/deepcogito/cogito-v1-preview-llama-8B
Open source inference clients/UIs
Closed source inference clients/UIs
- LM Studio
- Backyard AI
- More will be added...
From original readme
The Cogito LLMs are instruction tuned generative models (text in/text out). All models are released under an open license for commercial use.
- Cogito models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
- The LLMs are trained using Iterated Distillation and Amplification (IDA) - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
- The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
- In both standard and reasoning modes, Cogito v1-preview models outperform their size equivalent counterparts on common industry benchmarks.
- Each model is trained in over 30 languages and supports a context length of 128k.
Usage
Here is a snippet below for usage with Transformers:
import transformers
import torch
model_id = "deepcogito/cogito-v1-preview-llama-8B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Give me a short introduction to LLMs."},
]
outputs = pipeline(
messages,
max_new_tokens=512,
)
print(outputs[0]["generated_text"][-1])
Implementing extended thinking
- By default, the model will answer in the standard mode.
- To enable thinking, you can do any one of the two methods:
- Add a specific system prompt, or
- Set
enable_thinking=True
while applying the chat template.
Method 1 - Add a specific system prompt.
To enable thinking, simply use this in the system prompt system_instruction = 'Enable deep thinking subroutine.'
If you already have a system_instruction, then use system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction
.
Here is an example -
import transformers
import torch
model_id = "deepcogito/cogito-v1-preview-llama-8B"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
messages = [
{"role": "system", "content": DEEP_THINKING_INSTRUCTION},
{"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
]
outputs = pipeline(
messages,
max_new_tokens=512,
)
print(outputs[0]["generated_text"][-1])
Similarly, if you have a system prompt, you can append the DEEP_THINKING_INSTRUCTION
to the beginning in this way -
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
system_prompt = "Reply to each prompt with only the actual code - no explanations."
prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
messages = [
{"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
{"role": "user", "content": prompt}
]
Method 2 - Set enable_thinking=True in the tokenizer
If you are using Huggingface tokenizers, then you can simply use add the argument enable_thinking=True
to the tokenization (this option is added to the chat template).
Here is an example -
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "deepcogito/cogito-v1-preview-llama-8B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to LLMs."
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Tool Calling
Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
Here is a snippet -
# First, define a tool
def get_current_temperature(location: str) -> float:
"""
Get the current temperature at a location.
Args:
location: The location to get the temperature for, in the format "City, Country"
Returns:
The current temperature at the specified location in the specified units, as a float.
"""
return 22. # A real function should probably actually get the temperature!
# Next, create a chat and apply the chat template
messages = [
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
]
model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
print(output_text)
This will result in the output -
<tool_call>
{"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
</tool_call><|eot_id|>
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
and then call the tool and append the result, with the tool
role, like so:
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
After that, you can generate()
again to let the model use the tool result in the chat:
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
This should result in the string -
'The current temperature in Paris is 22.0 degrees.<|eot_id|>'
- Downloads last month
- 370