Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
inference: false
|
7 |
+
tags:
|
8 |
+
- transformers
|
9 |
+
- gguf
|
10 |
+
- imatrix
|
11 |
+
- cogito-v1-preview-llama-8B
|
12 |
+
---
|
13 |
+
Quantizations of https://huggingface.co/deepcogito/cogito-v1-preview-llama-8B
|
14 |
+
|
15 |
+
|
16 |
+
### Open source inference clients/UIs
|
17 |
+
* [llama.cpp](https://github.com/ggerganov/llama.cpp)
|
18 |
+
* [KoboldCPP](https://github.com/LostRuins/koboldcpp)
|
19 |
+
* [ollama](https://github.com/ollama/ollama)
|
20 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
21 |
+
* [jan](https://github.com/janhq/jan)
|
22 |
+
* [GPT4All](https://github.com/nomic-ai/gpt4all)
|
23 |
+
|
24 |
+
### Closed source inference clients/UIs
|
25 |
+
* [LM Studio](https://lmstudio.ai/)
|
26 |
+
* [Backyard AI](https://backyard.ai/)
|
27 |
+
* More will be added...
|
28 |
+
---
|
29 |
+
|
30 |
+
# From original readme
|
31 |
+
|
32 |
+
The Cogito LLMs are instruction tuned generative models (text in/text out). All models are released under an open license for commercial use.
|
33 |
+
|
34 |
+
- Cogito models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
|
35 |
+
- The LLMs are trained using **Iterated Distillation and Amplification (IDA)** - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
|
36 |
+
- The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
|
37 |
+
- In both standard and reasoning modes, Cogito v1-preview models outperform their size equivalent counterparts on common industry benchmarks.
|
38 |
+
- Each model is trained in over 30 languages and supports a context length of 128k.
|
39 |
+
|
40 |
+
|
41 |
+
# Usage
|
42 |
+
Here is a snippet below for usage with Transformers:
|
43 |
+
|
44 |
+
```python
|
45 |
+
import transformers
|
46 |
+
import torch
|
47 |
+
|
48 |
+
model_id = "deepcogito/cogito-v1-preview-llama-8B"
|
49 |
+
|
50 |
+
pipeline = transformers.pipeline(
|
51 |
+
"text-generation",
|
52 |
+
model=model_id,
|
53 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
54 |
+
device_map="auto",
|
55 |
+
)
|
56 |
+
|
57 |
+
messages = [
|
58 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
59 |
+
{"role": "user", "content": "Give me a short introduction to LLMs."},
|
60 |
+
]
|
61 |
+
|
62 |
+
outputs = pipeline(
|
63 |
+
messages,
|
64 |
+
max_new_tokens=512,
|
65 |
+
)
|
66 |
+
|
67 |
+
print(outputs[0]["generated_text"][-1])
|
68 |
+
```
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
## Implementing extended thinking
|
73 |
+
- By default, the model will answer in the standard mode.
|
74 |
+
- To enable thinking, you can do any one of the two methods:
|
75 |
+
- Add a specific system prompt, or
|
76 |
+
- Set `enable_thinking=True` while applying the chat template.
|
77 |
+
|
78 |
+
|
79 |
+
### Method 1 - Add a specific system prompt.
|
80 |
+
To enable thinking, simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
|
81 |
+
|
82 |
+
If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
|
83 |
+
|
84 |
+
Here is an example -
|
85 |
+
|
86 |
+
```python
|
87 |
+
import transformers
|
88 |
+
import torch
|
89 |
+
|
90 |
+
model_id = "deepcogito/cogito-v1-preview-llama-8B"
|
91 |
+
|
92 |
+
pipeline = transformers.pipeline(
|
93 |
+
"text-generation",
|
94 |
+
model=model_id,
|
95 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
96 |
+
device_map="auto",
|
97 |
+
)
|
98 |
+
|
99 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
100 |
+
|
101 |
+
messages = [
|
102 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION},
|
103 |
+
{"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
|
104 |
+
]
|
105 |
+
|
106 |
+
outputs = pipeline(
|
107 |
+
messages,
|
108 |
+
max_new_tokens=512,
|
109 |
+
)
|
110 |
+
|
111 |
+
print(outputs[0]["generated_text"][-1])
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
+
Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way -
|
116 |
+
|
117 |
+
```python
|
118 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
119 |
+
|
120 |
+
system_prompt = "Reply to each prompt with only the actual code - no explanations."
|
121 |
+
prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
|
122 |
+
|
123 |
+
messages = [
|
124 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
|
125 |
+
{"role": "user", "content": prompt}
|
126 |
+
]
|
127 |
+
```
|
128 |
+
|
129 |
+
### Method 2 - Set enable_thinking=True in the tokenizer
|
130 |
+
If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
|
131 |
+
|
132 |
+
Here is an example -
|
133 |
+
```python
|
134 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
135 |
+
|
136 |
+
model_name = "deepcogito/cogito-v1-preview-llama-8B"
|
137 |
+
|
138 |
+
model = AutoModelForCausalLM.from_pretrained(
|
139 |
+
model_name,
|
140 |
+
torch_dtype="auto",
|
141 |
+
device_map="auto"
|
142 |
+
)
|
143 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
144 |
+
|
145 |
+
prompt = "Give me a short introduction to LLMs."
|
146 |
+
messages = [
|
147 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
148 |
+
{"role": "user", "content": prompt}
|
149 |
+
]
|
150 |
+
|
151 |
+
text = tokenizer.apply_chat_template(
|
152 |
+
messages,
|
153 |
+
tokenize=False,
|
154 |
+
add_generation_prompt=True,
|
155 |
+
enable_thinking=True
|
156 |
+
)
|
157 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
158 |
+
|
159 |
+
generated_ids = model.generate(
|
160 |
+
**model_inputs,
|
161 |
+
max_new_tokens=512
|
162 |
+
)
|
163 |
+
generated_ids = [
|
164 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
165 |
+
]
|
166 |
+
|
167 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
168 |
+
print(response)
|
169 |
+
```
|
170 |
+
|
171 |
+
# Tool Calling
|
172 |
+
Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
|
173 |
+
|
174 |
+
Here is a snippet -
|
175 |
+
|
176 |
+
```python
|
177 |
+
# First, define a tool
|
178 |
+
def get_current_temperature(location: str) -> float:
|
179 |
+
"""
|
180 |
+
Get the current temperature at a location.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
location: The location to get the temperature for, in the format "City, Country"
|
184 |
+
Returns:
|
185 |
+
The current temperature at the specified location in the specified units, as a float.
|
186 |
+
"""
|
187 |
+
return 22. # A real function should probably actually get the temperature!
|
188 |
+
|
189 |
+
# Next, create a chat and apply the chat template
|
190 |
+
messages = [
|
191 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
192 |
+
]
|
193 |
+
|
194 |
+
model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
195 |
+
|
196 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
197 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
198 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
199 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
200 |
+
print(output_text)
|
201 |
+
```
|
202 |
+
|
203 |
+
This will result in the output -
|
204 |
+
```
|
205 |
+
<tool_call>
|
206 |
+
{"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
207 |
+
</tool_call><|eot_id|>
|
208 |
+
```
|
209 |
+
|
210 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
211 |
+
|
212 |
+
```python
|
213 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
214 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
215 |
+
```
|
216 |
+
|
217 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
218 |
+
|
219 |
+
```python
|
220 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
221 |
+
```
|
222 |
+
|
223 |
+
After that, you can `generate()` again to let the model use the tool result in the chat:
|
224 |
+
|
225 |
+
```python
|
226 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
227 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
228 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
229 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
230 |
+
```
|
231 |
+
|
232 |
+
This should result in the string -
|
233 |
+
```
|
234 |
+
'The current temperature in Paris is 22.0 degrees.<|eot_id|>'
|
235 |
+
```
|