deberta-v3-emotion-multilabel-classifier
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2070
- Macro F1: 0.4374
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 |
---|---|---|---|---|
0.1987 | 1.0 | 2614 | 0.1941 | 0.3442 |
0.187 | 2.0 | 5228 | 0.1936 | 0.4078 |
0.1777 | 3.0 | 7842 | 0.1916 | 0.4123 |
0.1678 | 4.0 | 10456 | 0.1980 | 0.4285 |
0.1588 | 5.0 | 13070 | 0.2021 | 0.4348 |
0.1524 | 6.0 | 15684 | 0.2070 | 0.4374 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Model tree for dzakyahnaf/deberta-v3-emotion-multilabel-classifier
Base model
microsoft/deberta-v3-base