DeepSeek-R1-Distill-Llama-8B-F16.gguf - GGUF Internal File Dump
- Endian: LITTLE endian
Key Value Metadata Store
There are 32 key-value pairs in this file
POS | TYPE | Count | Key | Value |
---|---|---|---|---|
1 | UINT32 | 1 | GGUF.version | 3 |
2 | UINT64 | 1 | GGUF.tensor_count | 292 |
3 | UINT64 | 1 | GGUF.kv_count | 29 |
4 | STRING | 1 | general.architecture | llama |
5 | STRING | 1 | general.type | model |
6 | STRING | 1 | general.name | DeepSeek R1 Distill Llama 8B |
7 | STRING | 1 | general.basename | DeepSeek-R1-Distill-Llama |
8 | STRING | 1 | general.size_label | 8B |
9 | STRING | 1 | general.license | mit |
10 | UINT32 | 1 | llama.block_count | 32 |
11 | UINT32 | 1 | llama.context_length | 131072 |
12 | UINT32 | 1 | llama.embedding_length | 4096 |
13 | UINT32 | 1 | llama.feed_forward_length | 14336 |
14 | UINT32 | 1 | llama.attention.head_count | 32 |
15 | UINT32 | 1 | llama.attention.head_count_kv | 8 |
16 | FLOAT32 | 1 | llama.rope.freq_base | 500000.0 |
17 | FLOAT32 | 1 | llama.attention.layer_norm_rms_epsilon | 1e-05 |
18 | UINT32 | 1 | general.file_type | 1 |
19 | UINT32 | 1 | llama.vocab_size | 128256 |
20 | UINT32 | 1 | llama.rope.dimension_count | 128 |
21 | STRING | 1 | tokenizer.ggml.model | gpt2 |
22 | STRING | 1 | tokenizer.ggml.pre | llama-bpe |
23 | [STRING] | 128256 | tokenizer.ggml.tokens | [ ! , " , # , $ , % , ... ] |
24 | [INT32] | 128256 | tokenizer.ggml.token_type | [ 1, 1, 1, 1, 1, 1, 1, ... ] |
25 | [STRING] | 280147 | tokenizer.ggml.merges | [ Ġ Ġ , Ġ ĠĠĠ , ĠĠ ĠĠ , ĠĠĠ Ġ , i n , ... ] |
26 | UINT32 | 1 | tokenizer.ggml.bos_token_id | 128000 |
27 | UINT32 | 1 | tokenizer.ggml.eos_token_id | 128001 |
28 | UINT32 | 1 | tokenizer.ggml.padding_token_id | 128001 |
29 | BOOL | 1 | tokenizer.ggml.add_bos_token | True |
30 | BOOL | 1 | tokenizer.ggml.add_eos_token | False |
31 | STRING | 1 | tokenizer.chat_template | {% if not add_generation_promp ...{{'<|Assistant|>'}}{% endif %} |
32 | UINT32 | 1 | general.quantization_version | 2 |
Tensors Overview ~8B Elements
Total number of elements in all tensors: 8030261312 Elements
- DeepSeek-R1-Distill-Llama-8B-F16.gguf - GGUF Internal File Dump
- Key Value Metadata Store
- Tensors Overview ~8B Elements
- Tensor Data Offset
- Base Tensor Group : ~1B Elements
- Block 0 Tensor Group : ~218M Elements
- Block 1 Tensor Group : ~218M Elements
- Block 10 Tensor Group : ~218M Elements
- Block 11 Tensor Group : ~218M Elements
- Block 12 Tensor Group : ~218M Elements
- Block 13 Tensor Group : ~218M Elements
- Block 14 Tensor Group : ~218M Elements
- Block 15 Tensor Group : ~218M Elements
- Block 16 Tensor Group : ~218M Elements
- Block 17 Tensor Group : ~218M Elements
- Block 2 Tensor Group : ~218M Elements
- Block 3 Tensor Group : ~218M Elements
- Block 4 Tensor Group : ~218M Elements
- Block 5 Tensor Group : ~218M Elements
- Block 6 Tensor Group : ~218M Elements
- Block 7 Tensor Group : ~218M Elements
- Block 8 Tensor Group : ~218M Elements
- Block 9 Tensor Group : ~218M Elements
- Block 18 Tensor Group : ~218M Elements
- Block 19 Tensor Group : ~218M Elements
- Block 20 Tensor Group : ~218M Elements
- Block 21 Tensor Group : ~218M Elements
- Block 22 Tensor Group : ~218M Elements
- Block 23 Tensor Group : ~218M Elements
- Block 24 Tensor Group : ~218M Elements
- Block 25 Tensor Group : ~218M Elements
- Block 26 Tensor Group : ~218M Elements
- Block 27 Tensor Group : ~218M Elements
- Block 28 Tensor Group : ~218M Elements
- Block 29 Tensor Group : ~218M Elements
- Block 30 Tensor Group : ~218M Elements
- Block 31 Tensor Group : ~218M Elements
Tensor Data Offset
This table contains the offset and data segment relative to start of file
T_ID | Tensor Layer Name | Data Offset (B) | Data Size (B) |
---|---|---|---|
0 | rope_freqs.weight | 0x779960 | 0x100 |
1 | token_embd.weight | 0x779a60 | 0x3ea00000 |
2 | blk.0.attn_norm.weight | 0x3f179a60 | 0x4000 |
3 | blk.0.ffn_down.weight | 0x3f17da60 | 0x7000000 |
4 | blk.0.ffn_gate.weight | 0x4617da60 | 0x7000000 |
5 | blk.0.ffn_up.weight | 0x4d17da60 | 0x7000000 |
6 | blk.0.ffn_norm.weight | 0x5417da60 | 0x4000 |
7 | blk.0.attn_k.weight | 0x54181a60 | 0x800000 |
8 | blk.0.attn_output.weight | 0x54981a60 | 0x2000000 |
9 | blk.0.attn_q.weight | 0x56981a60 | 0x2000000 |
10 | blk.0.attn_v.weight | 0x58981a60 | 0x800000 |
11 | blk.1.attn_norm.weight | 0x59181a60 | 0x4000 |
12 | blk.1.ffn_down.weight | 0x59185a60 | 0x7000000 |
13 | blk.1.ffn_gate.weight | 0x60185a60 | 0x7000000 |
14 | blk.1.ffn_up.weight | 0x67185a60 | 0x7000000 |
15 | blk.1.ffn_norm.weight | 0x6e185a60 | 0x4000 |
16 | blk.1.attn_k.weight | 0x6e189a60 | 0x800000 |
17 | blk.1.attn_output.weight | 0x6e989a60 | 0x2000000 |
18 | blk.1.attn_q.weight | 0x70989a60 | 0x2000000 |
19 | blk.1.attn_v.weight | 0x72989a60 | 0x800000 |
20 | blk.10.attn_norm.weight | 0x73189a60 | 0x4000 |
21 | blk.10.ffn_down.weight | 0x7318da60 | 0x7000000 |
22 | blk.10.ffn_gate.weight | 0x7a18da60 | 0x7000000 |
23 | blk.10.ffn_up.weight | 0x8118da60 | 0x7000000 |
24 | blk.10.ffn_norm.weight | 0x8818da60 | 0x4000 |
25 | blk.10.attn_k.weight | 0x88191a60 | 0x800000 |
26 | blk.10.attn_output.weight | 0x88991a60 | 0x2000000 |
27 | blk.10.attn_q.weight | 0x8a991a60 | 0x2000000 |
28 | blk.10.attn_v.weight | 0x8c991a60 | 0x800000 |
29 | blk.11.attn_norm.weight | 0x8d191a60 | 0x4000 |
30 | blk.11.ffn_down.weight | 0x8d195a60 | 0x7000000 |
31 | blk.11.ffn_gate.weight | 0x94195a60 | 0x7000000 |
32 | blk.11.ffn_up.weight | 0x9b195a60 | 0x7000000 |
33 | blk.11.ffn_norm.weight | 0xa2195a60 | 0x4000 |
34 | blk.11.attn_k.weight | 0xa2199a60 | 0x800000 |
35 | blk.11.attn_output.weight | 0xa2999a60 | 0x2000000 |
36 | blk.11.attn_q.weight | 0xa4999a60 | 0x2000000 |
37 | blk.11.attn_v.weight | 0xa6999a60 | 0x800000 |
38 | blk.12.attn_norm.weight | 0xa7199a60 | 0x4000 |
39 | blk.12.ffn_down.weight | 0xa719da60 | 0x7000000 |
40 | blk.12.ffn_gate.weight | 0xae19da60 | 0x7000000 |
41 | blk.12.ffn_up.weight | 0xb519da60 | 0x7000000 |
42 | blk.12.ffn_norm.weight | 0xbc19da60 | 0x4000 |
43 | blk.12.attn_k.weight | 0xbc1a1a60 | 0x800000 |
44 | blk.12.attn_output.weight | 0xbc9a1a60 | 0x2000000 |
45 | blk.12.attn_q.weight | 0xbe9a1a60 | 0x2000000 |
46 | blk.12.attn_v.weight | 0xc09a1a60 | 0x800000 |
47 | blk.13.attn_norm.weight | 0xc11a1a60 | 0x4000 |
48 | blk.13.ffn_down.weight | 0xc11a5a60 | 0x7000000 |
49 | blk.13.ffn_gate.weight | 0xc81a5a60 | 0x7000000 |
50 | blk.13.ffn_up.weight | 0xcf1a5a60 | 0x7000000 |
51 | blk.13.ffn_norm.weight | 0xd61a5a60 | 0x4000 |
52 | blk.13.attn_k.weight | 0xd61a9a60 | 0x800000 |
53 | blk.13.attn_output.weight | 0xd69a9a60 | 0x2000000 |
54 | blk.13.attn_q.weight | 0xd89a9a60 | 0x2000000 |
55 | blk.13.attn_v.weight | 0xda9a9a60 | 0x800000 |
56 | blk.14.attn_norm.weight | 0xdb1a9a60 | 0x4000 |
57 | blk.14.ffn_down.weight | 0xdb1ada60 | 0x7000000 |
58 | blk.14.ffn_gate.weight | 0xe21ada60 | 0x7000000 |
59 | blk.14.ffn_up.weight | 0xe91ada60 | 0x7000000 |
60 | blk.14.ffn_norm.weight | 0xf01ada60 | 0x4000 |
61 | blk.14.attn_k.weight | 0xf01b1a60 | 0x800000 |
62 | blk.14.attn_output.weight | 0xf09b1a60 | 0x2000000 |
63 | blk.14.attn_q.weight | 0xf29b1a60 | 0x2000000 |
64 | blk.14.attn_v.weight | 0xf49b1a60 | 0x800000 |
65 | blk.15.attn_norm.weight | 0xf51b1a60 | 0x4000 |
66 | blk.15.ffn_down.weight | 0xf51b5a60 | 0x7000000 |
67 | blk.15.ffn_gate.weight | 0xfc1b5a60 | 0x7000000 |
68 | blk.15.ffn_up.weight | 0x1031b5a60 | 0x7000000 |
69 | blk.15.ffn_norm.weight | 0x10a1b5a60 | 0x4000 |
70 | blk.15.attn_k.weight | 0x10a1b9a60 | 0x800000 |
71 | blk.15.attn_output.weight | 0x10a9b9a60 | 0x2000000 |
72 | blk.15.attn_q.weight | 0x10c9b9a60 | 0x2000000 |
73 | blk.15.attn_v.weight | 0x10e9b9a60 | 0x800000 |
74 | blk.16.attn_norm.weight | 0x10f1b9a60 | 0x4000 |
75 | blk.16.ffn_down.weight | 0x10f1bda60 | 0x7000000 |
76 | blk.16.ffn_gate.weight | 0x1161bda60 | 0x7000000 |
77 | blk.16.ffn_up.weight | 0x11d1bda60 | 0x7000000 |
78 | blk.16.ffn_norm.weight | 0x1241bda60 | 0x4000 |
79 | blk.16.attn_k.weight | 0x1241c1a60 | 0x800000 |
80 | blk.16.attn_output.weight | 0x1249c1a60 | 0x2000000 |
81 | blk.16.attn_q.weight | 0x1269c1a60 | 0x2000000 |
82 | blk.16.attn_v.weight | 0x1289c1a60 | 0x800000 |
83 | blk.17.ffn_gate.weight | 0x1291c1a60 | 0x7000000 |
84 | blk.17.attn_k.weight | 0x1301c1a60 | 0x800000 |
85 | blk.17.attn_output.weight | 0x1309c1a60 | 0x2000000 |
86 | blk.17.attn_q.weight | 0x1329c1a60 | 0x2000000 |
87 | blk.17.attn_v.weight | 0x1349c1a60 | 0x800000 |
88 | blk.2.attn_norm.weight | 0x1351c1a60 | 0x4000 |
89 | blk.2.ffn_down.weight | 0x1351c5a60 | 0x7000000 |
90 | blk.2.ffn_gate.weight | 0x13c1c5a60 | 0x7000000 |
91 | blk.2.ffn_up.weight | 0x1431c5a60 | 0x7000000 |
92 | blk.2.ffn_norm.weight | 0x14a1c5a60 | 0x4000 |
93 | blk.2.attn_k.weight | 0x14a1c9a60 | 0x800000 |
94 | blk.2.attn_output.weight | 0x14a9c9a60 | 0x2000000 |
95 | blk.2.attn_q.weight | 0x14c9c9a60 | 0x2000000 |
96 | blk.2.attn_v.weight | 0x14e9c9a60 | 0x800000 |
97 | blk.3.attn_norm.weight | 0x14f1c9a60 | 0x4000 |
98 | blk.3.ffn_down.weight | 0x14f1cda60 | 0x7000000 |
99 | blk.3.ffn_gate.weight | 0x1561cda60 | 0x7000000 |
100 | blk.3.ffn_up.weight | 0x15d1cda60 | 0x7000000 |
101 | blk.3.ffn_norm.weight | 0x1641cda60 | 0x4000 |
102 | blk.3.attn_k.weight | 0x1641d1a60 | 0x800000 |
103 | blk.3.attn_output.weight | 0x1649d1a60 | 0x2000000 |
104 | blk.3.attn_q.weight | 0x1669d1a60 | 0x2000000 |
105 | blk.3.attn_v.weight | 0x1689d1a60 | 0x800000 |
106 | blk.4.attn_norm.weight | 0x1691d1a60 | 0x4000 |
107 | blk.4.ffn_down.weight | 0x1691d5a60 | 0x7000000 |
108 | blk.4.ffn_gate.weight | 0x1701d5a60 | 0x7000000 |
109 | blk.4.ffn_up.weight | 0x1771d5a60 | 0x7000000 |
110 | blk.4.ffn_norm.weight | 0x17e1d5a60 | 0x4000 |
111 | blk.4.attn_k.weight | 0x17e1d9a60 | 0x800000 |
112 | blk.4.attn_output.weight | 0x17e9d9a60 | 0x2000000 |
113 | blk.4.attn_q.weight | 0x1809d9a60 | 0x2000000 |
114 | blk.4.attn_v.weight | 0x1829d9a60 | 0x800000 |
115 | blk.5.attn_norm.weight | 0x1831d9a60 | 0x4000 |
116 | blk.5.ffn_down.weight | 0x1831dda60 | 0x7000000 |
117 | blk.5.ffn_gate.weight | 0x18a1dda60 | 0x7000000 |
118 | blk.5.ffn_up.weight | 0x1911dda60 | 0x7000000 |
119 | blk.5.ffn_norm.weight | 0x1981dda60 | 0x4000 |
120 | blk.5.attn_k.weight | 0x1981e1a60 | 0x800000 |
121 | blk.5.attn_output.weight | 0x1989e1a60 | 0x2000000 |
122 | blk.5.attn_q.weight | 0x19a9e1a60 | 0x2000000 |
123 | blk.5.attn_v.weight | 0x19c9e1a60 | 0x800000 |
124 | blk.6.attn_norm.weight | 0x19d1e1a60 | 0x4000 |
125 | blk.6.ffn_down.weight | 0x19d1e5a60 | 0x7000000 |
126 | blk.6.ffn_gate.weight | 0x1a41e5a60 | 0x7000000 |
127 | blk.6.ffn_up.weight | 0x1ab1e5a60 | 0x7000000 |
128 | blk.6.ffn_norm.weight | 0x1b21e5a60 | 0x4000 |
129 | blk.6.attn_k.weight | 0x1b21e9a60 | 0x800000 |
130 | blk.6.attn_output.weight | 0x1b29e9a60 | 0x2000000 |
131 | blk.6.attn_q.weight | 0x1b49e9a60 | 0x2000000 |
132 | blk.6.attn_v.weight | 0x1b69e9a60 | 0x800000 |
133 | blk.7.attn_norm.weight | 0x1b71e9a60 | 0x4000 |
134 | blk.7.ffn_down.weight | 0x1b71eda60 | 0x7000000 |
135 | blk.7.ffn_gate.weight | 0x1be1eda60 | 0x7000000 |
136 | blk.7.ffn_up.weight | 0x1c51eda60 | 0x7000000 |
137 | blk.7.ffn_norm.weight | 0x1cc1eda60 | 0x4000 |
138 | blk.7.attn_k.weight | 0x1cc1f1a60 | 0x800000 |
139 | blk.7.attn_output.weight | 0x1cc9f1a60 | 0x2000000 |
140 | blk.7.attn_q.weight | 0x1ce9f1a60 | 0x2000000 |
141 | blk.7.attn_v.weight | 0x1d09f1a60 | 0x800000 |
142 | blk.8.attn_norm.weight | 0x1d11f1a60 | 0x4000 |
143 | blk.8.ffn_down.weight | 0x1d11f5a60 | 0x7000000 |
144 | blk.8.ffn_gate.weight | 0x1d81f5a60 | 0x7000000 |
145 | blk.8.ffn_up.weight | 0x1df1f5a60 | 0x7000000 |
146 | blk.8.ffn_norm.weight | 0x1e61f5a60 | 0x4000 |
147 | blk.8.attn_k.weight | 0x1e61f9a60 | 0x800000 |
148 | blk.8.attn_output.weight | 0x1e69f9a60 | 0x2000000 |
149 | blk.8.attn_q.weight | 0x1e89f9a60 | 0x2000000 |
150 | blk.8.attn_v.weight | 0x1ea9f9a60 | 0x800000 |
151 | blk.9.attn_norm.weight | 0x1eb1f9a60 | 0x4000 |
152 | blk.9.ffn_down.weight | 0x1eb1fda60 | 0x7000000 |
153 | blk.9.ffn_gate.weight | 0x1f21fda60 | 0x7000000 |
154 | blk.9.ffn_up.weight | 0x1f91fda60 | 0x7000000 |
155 | blk.9.ffn_norm.weight | 0x2001fda60 | 0x4000 |
156 | blk.9.attn_k.weight | 0x200201a60 | 0x800000 |
157 | blk.9.attn_output.weight | 0x200a01a60 | 0x2000000 |
158 | blk.9.attn_q.weight | 0x202a01a60 | 0x2000000 |
159 | blk.9.attn_v.weight | 0x204a01a60 | 0x800000 |
160 | output.weight | 0x205201a60 | 0x3ea00000 |
161 | blk.17.attn_norm.weight | 0x243c01a60 | 0x4000 |
162 | blk.17.ffn_down.weight | 0x243c05a60 | 0x7000000 |
163 | blk.17.ffn_up.weight | 0x24ac05a60 | 0x7000000 |
164 | blk.17.ffn_norm.weight | 0x251c05a60 | 0x4000 |
165 | blk.18.attn_norm.weight | 0x251c09a60 | 0x4000 |
166 | blk.18.ffn_down.weight | 0x251c0da60 | 0x7000000 |
167 | blk.18.ffn_gate.weight | 0x258c0da60 | 0x7000000 |
168 | blk.18.ffn_up.weight | 0x25fc0da60 | 0x7000000 |
169 | blk.18.ffn_norm.weight | 0x266c0da60 | 0x4000 |
170 | blk.18.attn_k.weight | 0x266c11a60 | 0x800000 |
171 | blk.18.attn_output.weight | 0x267411a60 | 0x2000000 |
172 | blk.18.attn_q.weight | 0x269411a60 | 0x2000000 |
173 | blk.18.attn_v.weight | 0x26b411a60 | 0x800000 |
174 | blk.19.attn_norm.weight | 0x26bc11a60 | 0x4000 |
175 | blk.19.ffn_down.weight | 0x26bc15a60 | 0x7000000 |
176 | blk.19.ffn_gate.weight | 0x272c15a60 | 0x7000000 |
177 | blk.19.ffn_up.weight | 0x279c15a60 | 0x7000000 |
178 | blk.19.ffn_norm.weight | 0x280c15a60 | 0x4000 |
179 | blk.19.attn_k.weight | 0x280c19a60 | 0x800000 |
180 | blk.19.attn_output.weight | 0x281419a60 | 0x2000000 |
181 | blk.19.attn_q.weight | 0x283419a60 | 0x2000000 |
182 | blk.19.attn_v.weight | 0x285419a60 | 0x800000 |
183 | blk.20.attn_norm.weight | 0x285c19a60 | 0x4000 |
184 | blk.20.ffn_down.weight | 0x285c1da60 | 0x7000000 |
185 | blk.20.ffn_gate.weight | 0x28cc1da60 | 0x7000000 |
186 | blk.20.ffn_up.weight | 0x293c1da60 | 0x7000000 |
187 | blk.20.ffn_norm.weight | 0x29ac1da60 | 0x4000 |
188 | blk.20.attn_k.weight | 0x29ac21a60 | 0x800000 |
189 | blk.20.attn_output.weight | 0x29b421a60 | 0x2000000 |
190 | blk.20.attn_q.weight | 0x29d421a60 | 0x2000000 |
191 | blk.20.attn_v.weight | 0x29f421a60 | 0x800000 |
192 | blk.21.attn_norm.weight | 0x29fc21a60 | 0x4000 |
193 | blk.21.ffn_down.weight | 0x29fc25a60 | 0x7000000 |
194 | blk.21.ffn_gate.weight | 0x2a6c25a60 | 0x7000000 |
195 | blk.21.ffn_up.weight | 0x2adc25a60 | 0x7000000 |
196 | blk.21.ffn_norm.weight | 0x2b4c25a60 | 0x4000 |
197 | blk.21.attn_k.weight | 0x2b4c29a60 | 0x800000 |
198 | blk.21.attn_output.weight | 0x2b5429a60 | 0x2000000 |
199 | blk.21.attn_q.weight | 0x2b7429a60 | 0x2000000 |
200 | blk.21.attn_v.weight | 0x2b9429a60 | 0x800000 |
201 | blk.22.attn_norm.weight | 0x2b9c29a60 | 0x4000 |
202 | blk.22.ffn_down.weight | 0x2b9c2da60 | 0x7000000 |
203 | blk.22.ffn_gate.weight | 0x2c0c2da60 | 0x7000000 |
204 | blk.22.ffn_up.weight | 0x2c7c2da60 | 0x7000000 |
205 | blk.22.ffn_norm.weight | 0x2cec2da60 | 0x4000 |
206 | blk.22.attn_k.weight | 0x2cec31a60 | 0x800000 |
207 | blk.22.attn_output.weight | 0x2cf431a60 | 0x2000000 |
208 | blk.22.attn_q.weight | 0x2d1431a60 | 0x2000000 |
209 | blk.22.attn_v.weight | 0x2d3431a60 | 0x800000 |
210 | blk.23.attn_norm.weight | 0x2d3c31a60 | 0x4000 |
211 | blk.23.ffn_down.weight | 0x2d3c35a60 | 0x7000000 |
212 | blk.23.ffn_gate.weight | 0x2dac35a60 | 0x7000000 |
213 | blk.23.ffn_up.weight | 0x2e1c35a60 | 0x7000000 |
214 | blk.23.ffn_norm.weight | 0x2e8c35a60 | 0x4000 |
215 | blk.23.attn_k.weight | 0x2e8c39a60 | 0x800000 |
216 | blk.23.attn_output.weight | 0x2e9439a60 | 0x2000000 |
217 | blk.23.attn_q.weight | 0x2eb439a60 | 0x2000000 |
218 | blk.23.attn_v.weight | 0x2ed439a60 | 0x800000 |
219 | blk.24.attn_norm.weight | 0x2edc39a60 | 0x4000 |
220 | blk.24.ffn_down.weight | 0x2edc3da60 | 0x7000000 |
221 | blk.24.ffn_gate.weight | 0x2f4c3da60 | 0x7000000 |
222 | blk.24.ffn_up.weight | 0x2fbc3da60 | 0x7000000 |
223 | blk.24.ffn_norm.weight | 0x302c3da60 | 0x4000 |
224 | blk.24.attn_k.weight | 0x302c41a60 | 0x800000 |
225 | blk.24.attn_output.weight | 0x303441a60 | 0x2000000 |
226 | blk.24.attn_q.weight | 0x305441a60 | 0x2000000 |
227 | blk.24.attn_v.weight | 0x307441a60 | 0x800000 |
228 | blk.25.attn_norm.weight | 0x307c41a60 | 0x4000 |
229 | blk.25.ffn_down.weight | 0x307c45a60 | 0x7000000 |
230 | blk.25.ffn_gate.weight | 0x30ec45a60 | 0x7000000 |
231 | blk.25.ffn_up.weight | 0x315c45a60 | 0x7000000 |
232 | blk.25.ffn_norm.weight | 0x31cc45a60 | 0x4000 |
233 | blk.25.attn_k.weight | 0x31cc49a60 | 0x800000 |
234 | blk.25.attn_output.weight | 0x31d449a60 | 0x2000000 |
235 | blk.25.attn_q.weight | 0x31f449a60 | 0x2000000 |
236 | blk.25.attn_v.weight | 0x321449a60 | 0x800000 |
237 | blk.26.attn_norm.weight | 0x321c49a60 | 0x4000 |
238 | blk.26.ffn_down.weight | 0x321c4da60 | 0x7000000 |
239 | blk.26.ffn_gate.weight | 0x328c4da60 | 0x7000000 |
240 | blk.26.ffn_up.weight | 0x32fc4da60 | 0x7000000 |
241 | blk.26.ffn_norm.weight | 0x336c4da60 | 0x4000 |
242 | blk.26.attn_k.weight | 0x336c51a60 | 0x800000 |
243 | blk.26.attn_output.weight | 0x337451a60 | 0x2000000 |
244 | blk.26.attn_q.weight | 0x339451a60 | 0x2000000 |
245 | blk.26.attn_v.weight | 0x33b451a60 | 0x800000 |
246 | blk.27.attn_norm.weight | 0x33bc51a60 | 0x4000 |
247 | blk.27.ffn_down.weight | 0x33bc55a60 | 0x7000000 |
248 | blk.27.ffn_gate.weight | 0x342c55a60 | 0x7000000 |
249 | blk.27.ffn_up.weight | 0x349c55a60 | 0x7000000 |
250 | blk.27.ffn_norm.weight | 0x350c55a60 | 0x4000 |
251 | blk.27.attn_k.weight | 0x350c59a60 | 0x800000 |
252 | blk.27.attn_output.weight | 0x351459a60 | 0x2000000 |
253 | blk.27.attn_q.weight | 0x353459a60 | 0x2000000 |
254 | blk.27.attn_v.weight | 0x355459a60 | 0x800000 |
255 | blk.28.attn_norm.weight | 0x355c59a60 | 0x4000 |
256 | blk.28.ffn_down.weight | 0x355c5da60 | 0x7000000 |
257 | blk.28.ffn_gate.weight | 0x35cc5da60 | 0x7000000 |
258 | blk.28.ffn_up.weight | 0x363c5da60 | 0x7000000 |
259 | blk.28.ffn_norm.weight | 0x36ac5da60 | 0x4000 |
260 | blk.28.attn_k.weight | 0x36ac61a60 | 0x800000 |
261 | blk.28.attn_output.weight | 0x36b461a60 | 0x2000000 |
262 | blk.28.attn_q.weight | 0x36d461a60 | 0x2000000 |
263 | blk.28.attn_v.weight | 0x36f461a60 | 0x800000 |
264 | blk.29.attn_norm.weight | 0x36fc61a60 | 0x4000 |
265 | blk.29.ffn_down.weight | 0x36fc65a60 | 0x7000000 |
266 | blk.29.ffn_gate.weight | 0x376c65a60 | 0x7000000 |
267 | blk.29.ffn_up.weight | 0x37dc65a60 | 0x7000000 |
268 | blk.29.ffn_norm.weight | 0x384c65a60 | 0x4000 |
269 | blk.29.attn_k.weight | 0x384c69a60 | 0x800000 |
270 | blk.29.attn_output.weight | 0x385469a60 | 0x2000000 |
271 | blk.29.attn_q.weight | 0x387469a60 | 0x2000000 |
272 | blk.29.attn_v.weight | 0x389469a60 | 0x800000 |
273 | blk.30.attn_norm.weight | 0x389c69a60 | 0x4000 |
274 | blk.30.ffn_down.weight | 0x389c6da60 | 0x7000000 |
275 | blk.30.ffn_gate.weight | 0x390c6da60 | 0x7000000 |
276 | blk.30.ffn_up.weight | 0x397c6da60 | 0x7000000 |
277 | blk.30.ffn_norm.weight | 0x39ec6da60 | 0x4000 |
278 | blk.30.attn_k.weight | 0x39ec71a60 | 0x800000 |
279 | blk.30.attn_output.weight | 0x39f471a60 | 0x2000000 |
280 | blk.30.attn_q.weight | 0x3a1471a60 | 0x2000000 |
281 | blk.30.attn_v.weight | 0x3a3471a60 | 0x800000 |
282 | blk.31.attn_norm.weight | 0x3a3c71a60 | 0x4000 |
283 | blk.31.ffn_down.weight | 0x3a3c75a60 | 0x7000000 |
284 | blk.31.ffn_gate.weight | 0x3aac75a60 | 0x7000000 |
285 | blk.31.ffn_up.weight | 0x3b1c75a60 | 0x7000000 |
286 | blk.31.ffn_norm.weight | 0x3b8c75a60 | 0x4000 |
287 | blk.31.attn_k.weight | 0x3b8c79a60 | 0x800000 |
288 | blk.31.attn_output.weight | 0x3b9479a60 | 0x2000000 |
289 | blk.31.attn_q.weight | 0x3bb479a60 | 0x2000000 |
290 | blk.31.attn_v.weight | 0x3bd479a60 | 0x800000 |
291 | output_norm.weight | 0x3bdc79a60 | 0x4000 |
Base Tensor Group : ~1B Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
0 | rope_freqs.weight | Rope_Freqs (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
1 | token_embd.weight | Token Embedding (W) | (~525M) 525336576 | 4096 x 128256 x 1 x 1 | F16 |
160 | output.weight | Output (W) | (~525M) 525336576 | 4096 x 128256 x 1 x 1 | F16 |
291 | output_norm.weight | Output Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
- Total elements in base: ( ~1B) 1050677312
- Percentage of total elements: 13.08%
Block 0 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
2 | blk.0.attn_norm.weight | Block 0 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
3 | blk.0.ffn_down.weight | Block 0 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
4 | blk.0.ffn_gate.weight | Block 0 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
5 | blk.0.ffn_up.weight | Block 0 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
6 | blk.0.ffn_norm.weight | Block 0 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
7 | blk.0.attn_k.weight | Block 0 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
8 | blk.0.attn_output.weight | Block 0 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
9 | blk.0.attn_q.weight | Block 0 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
10 | blk.0.attn_v.weight | Block 0 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.0: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 1 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
11 | blk.1.attn_norm.weight | Block 1 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
12 | blk.1.ffn_down.weight | Block 1 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
13 | blk.1.ffn_gate.weight | Block 1 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
14 | blk.1.ffn_up.weight | Block 1 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
15 | blk.1.ffn_norm.weight | Block 1 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
16 | blk.1.attn_k.weight | Block 1 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
17 | blk.1.attn_output.weight | Block 1 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
18 | blk.1.attn_q.weight | Block 1 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
19 | blk.1.attn_v.weight | Block 1 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.1: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 10 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
20 | blk.10.attn_norm.weight | Block 10 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
21 | blk.10.ffn_down.weight | Block 10 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
22 | blk.10.ffn_gate.weight | Block 10 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
23 | blk.10.ffn_up.weight | Block 10 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
24 | blk.10.ffn_norm.weight | Block 10 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
25 | blk.10.attn_k.weight | Block 10 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
26 | blk.10.attn_output.weight | Block 10 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
27 | blk.10.attn_q.weight | Block 10 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
28 | blk.10.attn_v.weight | Block 10 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.10: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 11 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
29 | blk.11.attn_norm.weight | Block 11 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
30 | blk.11.ffn_down.weight | Block 11 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
31 | blk.11.ffn_gate.weight | Block 11 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
32 | blk.11.ffn_up.weight | Block 11 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
33 | blk.11.ffn_norm.weight | Block 11 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
34 | blk.11.attn_k.weight | Block 11 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
35 | blk.11.attn_output.weight | Block 11 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
36 | blk.11.attn_q.weight | Block 11 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
37 | blk.11.attn_v.weight | Block 11 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.11: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 12 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
38 | blk.12.attn_norm.weight | Block 12 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
39 | blk.12.ffn_down.weight | Block 12 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
40 | blk.12.ffn_gate.weight | Block 12 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
41 | blk.12.ffn_up.weight | Block 12 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
42 | blk.12.ffn_norm.weight | Block 12 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
43 | blk.12.attn_k.weight | Block 12 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
44 | blk.12.attn_output.weight | Block 12 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
45 | blk.12.attn_q.weight | Block 12 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
46 | blk.12.attn_v.weight | Block 12 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.12: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 13 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
47 | blk.13.attn_norm.weight | Block 13 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
48 | blk.13.ffn_down.weight | Block 13 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
49 | blk.13.ffn_gate.weight | Block 13 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
50 | blk.13.ffn_up.weight | Block 13 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
51 | blk.13.ffn_norm.weight | Block 13 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
52 | blk.13.attn_k.weight | Block 13 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
53 | blk.13.attn_output.weight | Block 13 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
54 | blk.13.attn_q.weight | Block 13 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
55 | blk.13.attn_v.weight | Block 13 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.13: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 14 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
56 | blk.14.attn_norm.weight | Block 14 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
57 | blk.14.ffn_down.weight | Block 14 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
58 | blk.14.ffn_gate.weight | Block 14 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
59 | blk.14.ffn_up.weight | Block 14 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
60 | blk.14.ffn_norm.weight | Block 14 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
61 | blk.14.attn_k.weight | Block 14 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
62 | blk.14.attn_output.weight | Block 14 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
63 | blk.14.attn_q.weight | Block 14 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
64 | blk.14.attn_v.weight | Block 14 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.14: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 15 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
65 | blk.15.attn_norm.weight | Block 15 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
66 | blk.15.ffn_down.weight | Block 15 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
67 | blk.15.ffn_gate.weight | Block 15 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
68 | blk.15.ffn_up.weight | Block 15 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
69 | blk.15.ffn_norm.weight | Block 15 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
70 | blk.15.attn_k.weight | Block 15 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
71 | blk.15.attn_output.weight | Block 15 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
72 | blk.15.attn_q.weight | Block 15 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
73 | blk.15.attn_v.weight | Block 15 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.15: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 16 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
74 | blk.16.attn_norm.weight | Block 16 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
75 | blk.16.ffn_down.weight | Block 16 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
76 | blk.16.ffn_gate.weight | Block 16 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
77 | blk.16.ffn_up.weight | Block 16 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
78 | blk.16.ffn_norm.weight | Block 16 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
79 | blk.16.attn_k.weight | Block 16 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
80 | blk.16.attn_output.weight | Block 16 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
81 | blk.16.attn_q.weight | Block 16 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
82 | blk.16.attn_v.weight | Block 16 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.16: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 17 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
83 | blk.17.ffn_gate.weight | Block 17 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
84 | blk.17.attn_k.weight | Block 17 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
85 | blk.17.attn_output.weight | Block 17 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
86 | blk.17.attn_q.weight | Block 17 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
87 | blk.17.attn_v.weight | Block 17 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
161 | blk.17.attn_norm.weight | Block 17 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
162 | blk.17.ffn_down.weight | Block 17 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
163 | blk.17.ffn_up.weight | Block 17 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
164 | blk.17.ffn_norm.weight | Block 17 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
- Total elements in blk.17: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 2 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
88 | blk.2.attn_norm.weight | Block 2 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
89 | blk.2.ffn_down.weight | Block 2 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
90 | blk.2.ffn_gate.weight | Block 2 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
91 | blk.2.ffn_up.weight | Block 2 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
92 | blk.2.ffn_norm.weight | Block 2 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
93 | blk.2.attn_k.weight | Block 2 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
94 | blk.2.attn_output.weight | Block 2 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
95 | blk.2.attn_q.weight | Block 2 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
96 | blk.2.attn_v.weight | Block 2 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.2: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 3 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
97 | blk.3.attn_norm.weight | Block 3 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
98 | blk.3.ffn_down.weight | Block 3 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
99 | blk.3.ffn_gate.weight | Block 3 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
100 | blk.3.ffn_up.weight | Block 3 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
101 | blk.3.ffn_norm.weight | Block 3 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
102 | blk.3.attn_k.weight | Block 3 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
103 | blk.3.attn_output.weight | Block 3 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
104 | blk.3.attn_q.weight | Block 3 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
105 | blk.3.attn_v.weight | Block 3 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.3: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 4 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
106 | blk.4.attn_norm.weight | Block 4 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
107 | blk.4.ffn_down.weight | Block 4 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
108 | blk.4.ffn_gate.weight | Block 4 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
109 | blk.4.ffn_up.weight | Block 4 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
110 | blk.4.ffn_norm.weight | Block 4 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
111 | blk.4.attn_k.weight | Block 4 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
112 | blk.4.attn_output.weight | Block 4 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
113 | blk.4.attn_q.weight | Block 4 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
114 | blk.4.attn_v.weight | Block 4 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.4: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 5 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
115 | blk.5.attn_norm.weight | Block 5 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
116 | blk.5.ffn_down.weight | Block 5 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
117 | blk.5.ffn_gate.weight | Block 5 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
118 | blk.5.ffn_up.weight | Block 5 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
119 | blk.5.ffn_norm.weight | Block 5 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
120 | blk.5.attn_k.weight | Block 5 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
121 | blk.5.attn_output.weight | Block 5 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
122 | blk.5.attn_q.weight | Block 5 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
123 | blk.5.attn_v.weight | Block 5 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.5: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 6 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
124 | blk.6.attn_norm.weight | Block 6 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
125 | blk.6.ffn_down.weight | Block 6 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
126 | blk.6.ffn_gate.weight | Block 6 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
127 | blk.6.ffn_up.weight | Block 6 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
128 | blk.6.ffn_norm.weight | Block 6 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
129 | blk.6.attn_k.weight | Block 6 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
130 | blk.6.attn_output.weight | Block 6 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
131 | blk.6.attn_q.weight | Block 6 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
132 | blk.6.attn_v.weight | Block 6 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.6: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 7 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
133 | blk.7.attn_norm.weight | Block 7 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
134 | blk.7.ffn_down.weight | Block 7 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
135 | blk.7.ffn_gate.weight | Block 7 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
136 | blk.7.ffn_up.weight | Block 7 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
137 | blk.7.ffn_norm.weight | Block 7 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
138 | blk.7.attn_k.weight | Block 7 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
139 | blk.7.attn_output.weight | Block 7 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
140 | blk.7.attn_q.weight | Block 7 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
141 | blk.7.attn_v.weight | Block 7 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.7: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 8 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
142 | blk.8.attn_norm.weight | Block 8 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
143 | blk.8.ffn_down.weight | Block 8 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
144 | blk.8.ffn_gate.weight | Block 8 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
145 | blk.8.ffn_up.weight | Block 8 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
146 | blk.8.ffn_norm.weight | Block 8 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
147 | blk.8.attn_k.weight | Block 8 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
148 | blk.8.attn_output.weight | Block 8 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
149 | blk.8.attn_q.weight | Block 8 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
150 | blk.8.attn_v.weight | Block 8 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.8: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 9 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
151 | blk.9.attn_norm.weight | Block 9 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
152 | blk.9.ffn_down.weight | Block 9 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
153 | blk.9.ffn_gate.weight | Block 9 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
154 | blk.9.ffn_up.weight | Block 9 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
155 | blk.9.ffn_norm.weight | Block 9 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
156 | blk.9.attn_k.weight | Block 9 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
157 | blk.9.attn_output.weight | Block 9 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
158 | blk.9.attn_q.weight | Block 9 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
159 | blk.9.attn_v.weight | Block 9 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.9: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 18 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
165 | blk.18.attn_norm.weight | Block 18 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
166 | blk.18.ffn_down.weight | Block 18 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
167 | blk.18.ffn_gate.weight | Block 18 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
168 | blk.18.ffn_up.weight | Block 18 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
169 | blk.18.ffn_norm.weight | Block 18 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
170 | blk.18.attn_k.weight | Block 18 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
171 | blk.18.attn_output.weight | Block 18 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
172 | blk.18.attn_q.weight | Block 18 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
173 | blk.18.attn_v.weight | Block 18 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.18: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 19 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
174 | blk.19.attn_norm.weight | Block 19 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
175 | blk.19.ffn_down.weight | Block 19 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
176 | blk.19.ffn_gate.weight | Block 19 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
177 | blk.19.ffn_up.weight | Block 19 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
178 | blk.19.ffn_norm.weight | Block 19 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
179 | blk.19.attn_k.weight | Block 19 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
180 | blk.19.attn_output.weight | Block 19 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
181 | blk.19.attn_q.weight | Block 19 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
182 | blk.19.attn_v.weight | Block 19 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.19: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 20 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
183 | blk.20.attn_norm.weight | Block 20 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
184 | blk.20.ffn_down.weight | Block 20 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
185 | blk.20.ffn_gate.weight | Block 20 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
186 | blk.20.ffn_up.weight | Block 20 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
187 | blk.20.ffn_norm.weight | Block 20 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
188 | blk.20.attn_k.weight | Block 20 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
189 | blk.20.attn_output.weight | Block 20 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
190 | blk.20.attn_q.weight | Block 20 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
191 | blk.20.attn_v.weight | Block 20 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.20: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 21 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
192 | blk.21.attn_norm.weight | Block 21 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
193 | blk.21.ffn_down.weight | Block 21 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
194 | blk.21.ffn_gate.weight | Block 21 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
195 | blk.21.ffn_up.weight | Block 21 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
196 | blk.21.ffn_norm.weight | Block 21 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
197 | blk.21.attn_k.weight | Block 21 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
198 | blk.21.attn_output.weight | Block 21 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
199 | blk.21.attn_q.weight | Block 21 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
200 | blk.21.attn_v.weight | Block 21 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.21: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 22 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
201 | blk.22.attn_norm.weight | Block 22 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
202 | blk.22.ffn_down.weight | Block 22 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
203 | blk.22.ffn_gate.weight | Block 22 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
204 | blk.22.ffn_up.weight | Block 22 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
205 | blk.22.ffn_norm.weight | Block 22 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
206 | blk.22.attn_k.weight | Block 22 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
207 | blk.22.attn_output.weight | Block 22 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
208 | blk.22.attn_q.weight | Block 22 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
209 | blk.22.attn_v.weight | Block 22 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.22: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 23 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
210 | blk.23.attn_norm.weight | Block 23 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
211 | blk.23.ffn_down.weight | Block 23 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
212 | blk.23.ffn_gate.weight | Block 23 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
213 | blk.23.ffn_up.weight | Block 23 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
214 | blk.23.ffn_norm.weight | Block 23 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
215 | blk.23.attn_k.weight | Block 23 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
216 | blk.23.attn_output.weight | Block 23 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
217 | blk.23.attn_q.weight | Block 23 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
218 | blk.23.attn_v.weight | Block 23 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.23: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 24 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
219 | blk.24.attn_norm.weight | Block 24 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
220 | blk.24.ffn_down.weight | Block 24 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
221 | blk.24.ffn_gate.weight | Block 24 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
222 | blk.24.ffn_up.weight | Block 24 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
223 | blk.24.ffn_norm.weight | Block 24 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
224 | blk.24.attn_k.weight | Block 24 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
225 | blk.24.attn_output.weight | Block 24 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
226 | blk.24.attn_q.weight | Block 24 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
227 | blk.24.attn_v.weight | Block 24 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.24: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 25 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
228 | blk.25.attn_norm.weight | Block 25 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
229 | blk.25.ffn_down.weight | Block 25 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
230 | blk.25.ffn_gate.weight | Block 25 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
231 | blk.25.ffn_up.weight | Block 25 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
232 | blk.25.ffn_norm.weight | Block 25 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
233 | blk.25.attn_k.weight | Block 25 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
234 | blk.25.attn_output.weight | Block 25 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
235 | blk.25.attn_q.weight | Block 25 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
236 | blk.25.attn_v.weight | Block 25 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.25: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 26 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
237 | blk.26.attn_norm.weight | Block 26 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
238 | blk.26.ffn_down.weight | Block 26 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
239 | blk.26.ffn_gate.weight | Block 26 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
240 | blk.26.ffn_up.weight | Block 26 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
241 | blk.26.ffn_norm.weight | Block 26 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
242 | blk.26.attn_k.weight | Block 26 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
243 | blk.26.attn_output.weight | Block 26 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
244 | blk.26.attn_q.weight | Block 26 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
245 | blk.26.attn_v.weight | Block 26 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.26: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 27 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
246 | blk.27.attn_norm.weight | Block 27 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
247 | blk.27.ffn_down.weight | Block 27 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
248 | blk.27.ffn_gate.weight | Block 27 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
249 | blk.27.ffn_up.weight | Block 27 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
250 | blk.27.ffn_norm.weight | Block 27 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
251 | blk.27.attn_k.weight | Block 27 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
252 | blk.27.attn_output.weight | Block 27 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
253 | blk.27.attn_q.weight | Block 27 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
254 | blk.27.attn_v.weight | Block 27 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.27: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 28 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
255 | blk.28.attn_norm.weight | Block 28 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
256 | blk.28.ffn_down.weight | Block 28 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
257 | blk.28.ffn_gate.weight | Block 28 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
258 | blk.28.ffn_up.weight | Block 28 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
259 | blk.28.ffn_norm.weight | Block 28 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
260 | blk.28.attn_k.weight | Block 28 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
261 | blk.28.attn_output.weight | Block 28 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
262 | blk.28.attn_q.weight | Block 28 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
263 | blk.28.attn_v.weight | Block 28 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.28: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 29 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
264 | blk.29.attn_norm.weight | Block 29 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
265 | blk.29.ffn_down.weight | Block 29 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
266 | blk.29.ffn_gate.weight | Block 29 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
267 | blk.29.ffn_up.weight | Block 29 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
268 | blk.29.ffn_norm.weight | Block 29 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
269 | blk.29.attn_k.weight | Block 29 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
270 | blk.29.attn_output.weight | Block 29 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
271 | blk.29.attn_q.weight | Block 29 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
272 | blk.29.attn_v.weight | Block 29 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.29: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 30 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
273 | blk.30.attn_norm.weight | Block 30 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
274 | blk.30.ffn_down.weight | Block 30 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
275 | blk.30.ffn_gate.weight | Block 30 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
276 | blk.30.ffn_up.weight | Block 30 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
277 | blk.30.ffn_norm.weight | Block 30 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
278 | blk.30.attn_k.weight | Block 30 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
279 | blk.30.attn_output.weight | Block 30 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
280 | blk.30.attn_q.weight | Block 30 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
281 | blk.30.attn_v.weight | Block 30 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.30: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 31 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
282 | blk.31.attn_norm.weight | Block 31 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
283 | blk.31.ffn_down.weight | Block 31 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | F16 |
284 | blk.31.ffn_gate.weight | Block 31 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
285 | blk.31.ffn_up.weight | Block 31 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | F16 |
286 | blk.31.ffn_norm.weight | Block 31 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
287 | blk.31.attn_k.weight | Block 31 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
288 | blk.31.attn_output.weight | Block 31 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
289 | blk.31.attn_q.weight | Block 31 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | F16 |
290 | blk.31.attn_v.weight | Block 31 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | F16 |
- Total elements in blk.31: (~218M) 218112000
- Percentage of total elements: 2.72%