DeepSeek-R1-Distill-Llama-8B-GGUF / scores /DeepSeek-R1-Distill-Llama-8B-IQ4_NL.md
eaddario's picture
Add GGUF internal file structure
66279ab verified

DeepSeek-R1-Distill-Llama-8B-IQ4_NL.gguf - GGUF Internal File Dump

  • Endian: LITTLE endian

Key Value Metadata Store

There are 36 key-value pairs in this file

POS TYPE Count Key Value
1 UINT32 1 GGUF.version 3
2 UINT64 1 GGUF.tensor_count 292
3 UINT64 1 GGUF.kv_count 33
4 STRING 1 general.architecture llama
5 STRING 1 general.type model
6 STRING 1 general.name DeepSeek R1 Distill Llama 8B
7 STRING 1 general.basename DeepSeek-R1-Distill-Llama
8 STRING 1 general.size_label 8B
9 STRING 1 general.license mit
10 UINT32 1 llama.block_count 32
11 UINT32 1 llama.context_length 131072
12 UINT32 1 llama.embedding_length 4096
13 UINT32 1 llama.feed_forward_length 14336
14 UINT32 1 llama.attention.head_count 32
15 UINT32 1 llama.attention.head_count_kv 8
16 FLOAT32 1 llama.rope.freq_base 500000.0
17 FLOAT32 1 llama.attention.layer_norm_rms_epsilon 1e-05
18 UINT32 1 llama.vocab_size 128256
19 UINT32 1 llama.rope.dimension_count 128
20 STRING 1 tokenizer.ggml.model gpt2
21 STRING 1 tokenizer.ggml.pre llama-bpe
22 [STRING] 128256 tokenizer.ggml.tokens [ !, ", #, $, %, ... ]
23 [INT32] 128256 tokenizer.ggml.token_type [ 1, 1, 1, 1, 1, 1, 1, ... ]
24 [STRING] 280147 tokenizer.ggml.merges [ Ġ Ġ, Ġ ĠĠĠ, ĠĠ ĠĠ, ĠĠĠ Ġ, i n, ... ]
25 UINT32 1 tokenizer.ggml.bos_token_id 128000
26 UINT32 1 tokenizer.ggml.eos_token_id 128001
27 UINT32 1 tokenizer.ggml.padding_token_id 128001
28 BOOL 1 tokenizer.ggml.add_bos_token True
29 BOOL 1 tokenizer.ggml.add_eos_token False
30 STRING 1 tokenizer.chat_template {% if not add_generation_promp...{{'<|Assistant|>'}}{% endif %}
31 UINT32 1 general.quantization_version 2
32 UINT32 1 general.file_type 25
33 STRING 1 quantize.imatrix.file ./imatrix/imatrix-DeepSeek-R1-Distill-Llama-8B-small.dat
34 STRING 1 quantize.imatrix.dataset ../../datasets/imatrix/calibration_all_small.txt
35 INT32 1 quantize.imatrix.entries_count 225
36 INT32 1 quantize.imatrix.chunks_count 1130

Tensors Overview ~8B Elements

Total number of elements in all tensors: 8030261312 Elements

Tensor Data Offset

This table contains the offset and data segment relative to start of file

T_ID Tensor Layer Name Data Offset (B) Data Size (B)
0 output.weight 0x779a80 0x119d0000
1 output_norm.weight 0x12149a80 0x4000
2 rope_freqs.weight 0x1214da80 0x100
3 token_embd.weight 0x1214db80 0xd746000
4 blk.0.attn_k.weight 0x1f893b80 0x240000
5 blk.0.attn_norm.weight 0x1fad3b80 0x4000
6 blk.0.attn_output.weight 0x1fad7b80 0x900000
7 blk.0.attn_q.weight 0x203d7b80 0x900000
8 blk.0.attn_v.weight 0x20cd7b80 0x240000
9 blk.0.ffn_down.weight 0x20f17b80 0x2680000
10 blk.0.ffn_gate.weight 0x23597b80 0x1f80000
11 blk.0.ffn_norm.weight 0x25517b80 0x4000
12 blk.0.ffn_up.weight 0x2551bb80 0x1f80000
13 blk.1.attn_k.weight 0x2749bb80 0x240000
14 blk.1.attn_norm.weight 0x276dbb80 0x4000
15 blk.1.attn_output.weight 0x276dfb80 0x900000
16 blk.1.attn_q.weight 0x27fdfb80 0x900000
17 blk.1.attn_v.weight 0x288dfb80 0x240000
18 blk.1.ffn_down.weight 0x28b1fb80 0x2680000
19 blk.1.ffn_gate.weight 0x2b19fb80 0x1f80000
20 blk.1.ffn_norm.weight 0x2d11fb80 0x4000
21 blk.1.ffn_up.weight 0x2d123b80 0x1f80000
22 blk.2.attn_k.weight 0x2f0a3b80 0x240000
23 blk.2.attn_norm.weight 0x2f2e3b80 0x4000
24 blk.2.attn_output.weight 0x2f2e7b80 0x900000
25 blk.2.attn_q.weight 0x2fbe7b80 0x900000
26 blk.2.attn_v.weight 0x304e7b80 0x240000
27 blk.2.ffn_down.weight 0x30727b80 0x2680000
28 blk.2.ffn_gate.weight 0x32da7b80 0x1f80000
29 blk.2.ffn_norm.weight 0x34d27b80 0x4000
30 blk.2.ffn_up.weight 0x34d2bb80 0x1f80000
31 blk.3.attn_k.weight 0x36cabb80 0x240000
32 blk.3.attn_norm.weight 0x36eebb80 0x4000
33 blk.3.attn_output.weight 0x36eefb80 0x900000
34 blk.3.attn_q.weight 0x377efb80 0x900000
35 blk.3.attn_v.weight 0x380efb80 0x240000
36 blk.3.ffn_down.weight 0x3832fb80 0x2680000
37 blk.3.ffn_gate.weight 0x3a9afb80 0x1f80000
38 blk.3.ffn_norm.weight 0x3c92fb80 0x4000
39 blk.3.ffn_up.weight 0x3c933b80 0x1f80000
40 blk.4.attn_k.weight 0x3e8b3b80 0x240000
41 blk.4.attn_norm.weight 0x3eaf3b80 0x4000
42 blk.4.attn_output.weight 0x3eaf7b80 0x900000
43 blk.4.attn_q.weight 0x3f3f7b80 0x900000
44 blk.4.attn_v.weight 0x3fcf7b80 0x240000
45 blk.4.ffn_down.weight 0x3ff37b80 0x2680000
46 blk.4.ffn_gate.weight 0x425b7b80 0x1f80000
47 blk.4.ffn_norm.weight 0x44537b80 0x4000
48 blk.4.ffn_up.weight 0x4453bb80 0x1f80000
49 blk.5.attn_k.weight 0x464bbb80 0x240000
50 blk.5.attn_norm.weight 0x466fbb80 0x4000
51 blk.5.attn_output.weight 0x466ffb80 0x900000
52 blk.5.attn_q.weight 0x46fffb80 0x900000
53 blk.5.attn_v.weight 0x478ffb80 0x240000
54 blk.5.ffn_down.weight 0x47b3fb80 0x2680000
55 blk.5.ffn_gate.weight 0x4a1bfb80 0x1f80000
56 blk.5.ffn_norm.weight 0x4c13fb80 0x4000
57 blk.5.ffn_up.weight 0x4c143b80 0x1f80000
58 blk.6.attn_k.weight 0x4e0c3b80 0x240000
59 blk.6.attn_norm.weight 0x4e303b80 0x4000
60 blk.6.attn_output.weight 0x4e307b80 0x900000
61 blk.6.attn_q.weight 0x4ec07b80 0x900000
62 blk.6.attn_v.weight 0x4f507b80 0x240000
63 blk.6.ffn_down.weight 0x4f747b80 0x2680000
64 blk.6.ffn_gate.weight 0x51dc7b80 0x1f80000
65 blk.6.ffn_norm.weight 0x53d47b80 0x4000
66 blk.6.ffn_up.weight 0x53d4bb80 0x1f80000
67 blk.7.attn_k.weight 0x55ccbb80 0x240000
68 blk.7.attn_norm.weight 0x55f0bb80 0x4000
69 blk.7.attn_output.weight 0x55f0fb80 0x900000
70 blk.7.attn_q.weight 0x5680fb80 0x900000
71 blk.7.attn_v.weight 0x5710fb80 0x240000
72 blk.7.ffn_down.weight 0x5734fb80 0x2680000
73 blk.7.ffn_gate.weight 0x599cfb80 0x1f80000
74 blk.7.ffn_norm.weight 0x5b94fb80 0x4000
75 blk.7.ffn_up.weight 0x5b953b80 0x1f80000
76 blk.8.attn_k.weight 0x5d8d3b80 0x240000
77 blk.8.attn_norm.weight 0x5db13b80 0x4000
78 blk.8.attn_output.weight 0x5db17b80 0x900000
79 blk.8.attn_q.weight 0x5e417b80 0x900000
80 blk.8.attn_v.weight 0x5ed17b80 0x240000
81 blk.8.ffn_down.weight 0x5ef57b80 0x2680000
82 blk.8.ffn_gate.weight 0x615d7b80 0x1f80000
83 blk.8.ffn_norm.weight 0x63557b80 0x4000
84 blk.8.ffn_up.weight 0x6355bb80 0x1f80000
85 blk.9.attn_k.weight 0x654dbb80 0x240000
86 blk.9.attn_norm.weight 0x6571bb80 0x4000
87 blk.9.attn_output.weight 0x6571fb80 0x900000
88 blk.9.attn_q.weight 0x6601fb80 0x900000
89 blk.9.attn_v.weight 0x6691fb80 0x240000
90 blk.9.ffn_down.weight 0x66b5fb80 0x2680000
91 blk.9.ffn_gate.weight 0x691dfb80 0x1f80000
92 blk.9.ffn_norm.weight 0x6b15fb80 0x4000
93 blk.9.ffn_up.weight 0x6b163b80 0x1f80000
94 blk.10.attn_k.weight 0x6d0e3b80 0x240000
95 blk.10.attn_norm.weight 0x6d323b80 0x4000
96 blk.10.attn_output.weight 0x6d327b80 0x900000
97 blk.10.attn_q.weight 0x6dc27b80 0x900000
98 blk.10.attn_v.weight 0x6e527b80 0x240000
99 blk.10.ffn_down.weight 0x6e767b80 0x2680000
100 blk.10.ffn_gate.weight 0x70de7b80 0x1f80000
101 blk.10.ffn_norm.weight 0x72d67b80 0x4000
102 blk.10.ffn_up.weight 0x72d6bb80 0x1f80000
103 blk.11.attn_k.weight 0x74cebb80 0x240000
104 blk.11.attn_norm.weight 0x74f2bb80 0x4000
105 blk.11.attn_output.weight 0x74f2fb80 0x900000
106 blk.11.attn_q.weight 0x7582fb80 0x900000
107 blk.11.attn_v.weight 0x7612fb80 0x240000
108 blk.11.ffn_down.weight 0x7636fb80 0x2680000
109 blk.11.ffn_gate.weight 0x789efb80 0x1f80000
110 blk.11.ffn_norm.weight 0x7a96fb80 0x4000
111 blk.11.ffn_up.weight 0x7a973b80 0x1f80000
112 blk.12.attn_k.weight 0x7c8f3b80 0x240000
113 blk.12.attn_norm.weight 0x7cb33b80 0x4000
114 blk.12.attn_output.weight 0x7cb37b80 0x900000
115 blk.12.attn_q.weight 0x7d437b80 0x900000
116 blk.12.attn_v.weight 0x7dd37b80 0x240000
117 blk.12.ffn_down.weight 0x7df77b80 0x2680000
118 blk.12.ffn_gate.weight 0x805f7b80 0x1f80000
119 blk.12.ffn_norm.weight 0x82577b80 0x4000
120 blk.12.ffn_up.weight 0x8257bb80 0x1f80000
121 blk.13.attn_k.weight 0x844fbb80 0x240000
122 blk.13.attn_norm.weight 0x8473bb80 0x4000
123 blk.13.attn_output.weight 0x8473fb80 0x900000
124 blk.13.attn_q.weight 0x8503fb80 0x900000
125 blk.13.attn_v.weight 0x8593fb80 0x240000
126 blk.13.ffn_down.weight 0x85b7fb80 0x2680000
127 blk.13.ffn_gate.weight 0x881ffb80 0x1f80000
128 blk.13.ffn_norm.weight 0x8a17fb80 0x4000
129 blk.13.ffn_up.weight 0x8a183b80 0x1f80000
130 blk.14.attn_k.weight 0x8c103b80 0x240000
131 blk.14.attn_norm.weight 0x8c343b80 0x4000
132 blk.14.attn_output.weight 0x8c347b80 0x900000
133 blk.14.attn_q.weight 0x8cc47b80 0x900000
134 blk.14.attn_v.weight 0x8d547b80 0x240000
135 blk.14.ffn_down.weight 0x8d787b80 0x2680000
136 blk.14.ffn_gate.weight 0x8fe07b80 0x1f80000
137 blk.14.ffn_norm.weight 0x91d87b80 0x4000
138 blk.14.ffn_up.weight 0x91d8bb80 0x1f80000
139 blk.15.attn_k.weight 0x93d0bb80 0x240000
140 blk.15.attn_norm.weight 0x93f4bb80 0x4000
141 blk.15.attn_output.weight 0x93f4fb80 0x900000
142 blk.15.attn_q.weight 0x9484fb80 0x900000
143 blk.15.attn_v.weight 0x9514fb80 0x240000
144 blk.15.ffn_down.weight 0x9538fb80 0x2680000
145 blk.15.ffn_gate.weight 0x97a0fb80 0x1f80000
146 blk.15.ffn_norm.weight 0x9998fb80 0x4000
147 blk.15.ffn_up.weight 0x99993b80 0x1f80000
148 blk.16.attn_k.weight 0x9b913b80 0x1b8000
149 blk.16.attn_norm.weight 0x9bacbb80 0x4000
150 blk.16.attn_output.weight 0x9bacfb80 0x900000
151 blk.16.attn_q.weight 0x9c3cfb80 0x6e0000
152 blk.16.attn_v.weight 0x9caafb80 0x220000
153 blk.16.ffn_down.weight 0x9cccfb80 0x2680000
154 blk.16.ffn_gate.weight 0x9f34fb80 0x1810000
155 blk.16.ffn_norm.weight 0xa0b5fb80 0x4000
156 blk.16.ffn_up.weight 0xa0b63b80 0x1810000
157 blk.17.attn_k.weight 0xa2373b80 0x1b8000
158 blk.17.attn_norm.weight 0xa252bb80 0x4000
159 blk.17.attn_output.weight 0xa252fb80 0x900000
160 blk.17.attn_q.weight 0xa2e2fb80 0x6e0000
161 blk.17.attn_v.weight 0xa350fb80 0x220000
162 blk.17.ffn_down.weight 0xa372fb80 0x2680000
163 blk.17.ffn_gate.weight 0xa5dafb80 0x1810000
164 blk.17.ffn_norm.weight 0xa75bfb80 0x4000
165 blk.17.ffn_up.weight 0xa75c3b80 0x1810000
166 blk.18.attn_k.weight 0xa8dd3b80 0x1b8000
167 blk.18.attn_norm.weight 0xa8f8bb80 0x4000
168 blk.18.attn_output.weight 0xa8f8fb80 0x900000
169 blk.18.attn_q.weight 0xa988fb80 0x6e0000
170 blk.18.attn_v.weight 0xa9f6fb80 0x220000
171 blk.18.ffn_down.weight 0xaa18fb80 0x2680000
172 blk.18.ffn_gate.weight 0xac80fb80 0x1810000
173 blk.18.ffn_norm.weight 0xae01fb80 0x4000
174 blk.18.ffn_up.weight 0xae023b80 0x1810000
175 blk.19.attn_k.weight 0xaf833b80 0x1b8000
176 blk.19.attn_norm.weight 0xaf9ebb80 0x4000
177 blk.19.attn_output.weight 0xaf9efb80 0x900000
178 blk.19.attn_q.weight 0xb02efb80 0x6e0000
179 blk.19.attn_v.weight 0xb09cfb80 0x220000
180 blk.19.ffn_down.weight 0xb0befb80 0x2680000
181 blk.19.ffn_gate.weight 0xb326fb80 0x1810000
182 blk.19.ffn_norm.weight 0xb4a7fb80 0x4000
183 blk.19.ffn_up.weight 0xb4a83b80 0x1810000
184 blk.20.attn_k.weight 0xb6293b80 0x1b8000
185 blk.20.attn_norm.weight 0xb644bb80 0x4000
186 blk.20.attn_output.weight 0xb644fb80 0x900000
187 blk.20.attn_q.weight 0xb6d4fb80 0x6e0000
188 blk.20.attn_v.weight 0xb742fb80 0x220000
189 blk.20.ffn_down.weight 0xb764fb80 0x2680000
190 blk.20.ffn_gate.weight 0xb9ccfb80 0x1810000
191 blk.20.ffn_norm.weight 0xbb4dfb80 0x4000
192 blk.20.ffn_up.weight 0xbb4e3b80 0x1810000
193 blk.21.attn_k.weight 0xbccf3b80 0x1b8000
194 blk.21.attn_norm.weight 0xbceabb80 0x4000
195 blk.21.attn_output.weight 0xbceafb80 0x900000
196 blk.21.attn_q.weight 0xbd7afb80 0x6e0000
197 blk.21.attn_v.weight 0xbde8fb80 0x220000
198 blk.21.ffn_down.weight 0xbe0afb80 0x2680000
199 blk.21.ffn_gate.weight 0xc072fb80 0x1810000
200 blk.21.ffn_norm.weight 0xc1f3fb80 0x4000
201 blk.21.ffn_up.weight 0xc1f43b80 0x1810000
202 blk.22.attn_k.weight 0xc3753b80 0x1b8000
203 blk.22.attn_norm.weight 0xc390bb80 0x4000
204 blk.22.attn_output.weight 0xc390fb80 0x900000
205 blk.22.attn_q.weight 0xc420fb80 0x6e0000
206 blk.22.attn_v.weight 0xc48efb80 0x220000
207 blk.22.ffn_down.weight 0xc4b0fb80 0x2680000
208 blk.22.ffn_gate.weight 0xc718fb80 0x1810000
209 blk.22.ffn_norm.weight 0xc899fb80 0x4000
210 blk.22.ffn_up.weight 0xc89a3b80 0x1810000
211 blk.23.attn_k.weight 0xca1b3b80 0x1b8000
212 blk.23.attn_norm.weight 0xca36bb80 0x4000
213 blk.23.attn_output.weight 0xca36fb80 0x900000
214 blk.23.attn_q.weight 0xcac6fb80 0x6e0000
215 blk.23.attn_v.weight 0xcb34fb80 0x220000
216 blk.23.ffn_down.weight 0xcb56fb80 0x2680000
217 blk.23.ffn_gate.weight 0xcdbefb80 0x1810000
218 blk.23.ffn_norm.weight 0xcf3ffb80 0x4000
219 blk.23.ffn_up.weight 0xcf403b80 0x1810000
220 blk.24.attn_k.weight 0xd0c13b80 0x1b8000
221 blk.24.attn_norm.weight 0xd0dcbb80 0x4000
222 blk.24.attn_output.weight 0xd0dcfb80 0x900000
223 blk.24.attn_q.weight 0xd16cfb80 0x6e0000
224 blk.24.attn_v.weight 0xd1dafb80 0x220000
225 blk.24.ffn_down.weight 0xd1fcfb80 0x2680000
226 blk.24.ffn_gate.weight 0xd464fb80 0x1810000
227 blk.24.ffn_norm.weight 0xd5e5fb80 0x4000
228 blk.24.ffn_up.weight 0xd5e63b80 0x1810000
229 blk.25.attn_k.weight 0xd7673b80 0x1b8000
230 blk.25.attn_norm.weight 0xd782bb80 0x4000
231 blk.25.attn_output.weight 0xd782fb80 0x900000
232 blk.25.attn_q.weight 0xd812fb80 0x6e0000
233 blk.25.attn_v.weight 0xd880fb80 0x220000
234 blk.25.ffn_down.weight 0xd8a2fb80 0x2680000
235 blk.25.ffn_gate.weight 0xdb0afb80 0x1810000
236 blk.25.ffn_norm.weight 0xdc8bfb80 0x4000
237 blk.25.ffn_up.weight 0xdc8c3b80 0x1810000
238 blk.26.attn_k.weight 0xde0d3b80 0x1b8000
239 blk.26.attn_norm.weight 0xde28bb80 0x4000
240 blk.26.attn_output.weight 0xde28fb80 0x900000
241 blk.26.attn_q.weight 0xdeb8fb80 0x6e0000
242 blk.26.attn_v.weight 0xdf26fb80 0x220000
243 blk.26.ffn_down.weight 0xdf48fb80 0x2680000
244 blk.26.ffn_gate.weight 0xe1b0fb80 0x1810000
245 blk.26.ffn_norm.weight 0xe331fb80 0x4000
246 blk.26.ffn_up.weight 0xe3323b80 0x1810000
247 blk.27.attn_k.weight 0xe4b33b80 0x1b8000
248 blk.27.attn_norm.weight 0xe4cebb80 0x4000
249 blk.27.attn_output.weight 0xe4cefb80 0x900000
250 blk.27.attn_q.weight 0xe55efb80 0x6e0000
251 blk.27.attn_v.weight 0xe5ccfb80 0x220000
252 blk.27.ffn_down.weight 0xe5eefb80 0x2680000
253 blk.27.ffn_gate.weight 0xe856fb80 0x1810000
254 blk.27.ffn_norm.weight 0xe9d7fb80 0x4000
255 blk.27.ffn_up.weight 0xe9d83b80 0x1810000
256 blk.28.attn_k.weight 0xeb593b80 0x1b8000
257 blk.28.attn_norm.weight 0xeb74bb80 0x4000
258 blk.28.attn_output.weight 0xeb74fb80 0x900000
259 blk.28.attn_q.weight 0xec04fb80 0x6e0000
260 blk.28.attn_v.weight 0xec72fb80 0x220000
261 blk.28.ffn_down.weight 0xec94fb80 0x2680000
262 blk.28.ffn_gate.weight 0xeefcfb80 0x1810000
263 blk.28.ffn_norm.weight 0xf07dfb80 0x4000
264 blk.28.ffn_up.weight 0xf07e3b80 0x1810000
265 blk.29.attn_k.weight 0xf1ff3b80 0x1b8000
266 blk.29.attn_norm.weight 0xf21abb80 0x4000
267 blk.29.attn_output.weight 0xf21afb80 0x900000
268 blk.29.attn_q.weight 0xf2aafb80 0x6e0000
269 blk.29.attn_v.weight 0xf318fb80 0x220000
270 blk.29.ffn_down.weight 0xf33afb80 0x2680000
271 blk.29.ffn_gate.weight 0xf5a2fb80 0x1810000
272 blk.29.ffn_norm.weight 0xf723fb80 0x4000
273 blk.29.ffn_up.weight 0xf7243b80 0x1810000
274 blk.30.attn_k.weight 0xf8a53b80 0x1b8000
275 blk.30.attn_norm.weight 0xf8c0bb80 0x4000
276 blk.30.attn_output.weight 0xf8c0fb80 0x900000
277 blk.30.attn_q.weight 0xf950fb80 0x6e0000
278 blk.30.attn_v.weight 0xf9befb80 0x220000
279 blk.30.ffn_down.weight 0xf9e0fb80 0x2680000
280 blk.30.ffn_gate.weight 0xfc48fb80 0x1810000
281 blk.30.ffn_norm.weight 0xfdc9fb80 0x4000
282 blk.30.ffn_up.weight 0xfdca3b80 0x1810000
283 blk.31.attn_k.weight 0xff4b3b80 0x1b8000
284 blk.31.attn_norm.weight 0xff66bb80 0x4000
285 blk.31.attn_output.weight 0xff66fb80 0x900000
286 blk.31.attn_q.weight 0xfff6fb80 0x6e0000
287 blk.31.attn_v.weight 0x10064fb80 0x220000
288 blk.31.ffn_down.weight 0x10086fb80 0x2680000
289 blk.31.ffn_gate.weight 0x102eefb80 0x1810000
290 blk.31.ffn_norm.weight 0x1046ffb80 0x4000
291 blk.31.ffn_up.weight 0x104703b80 0x1810000

Base Tensor Group : ~1B Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
0 output.weight Output (W) (~525M) 525336576 4096 x 128256 x 1 x 1 IQ4_NL
1 output_norm.weight Output Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
2 rope_freqs.weight Rope_Freqs (W) ( 64) 64 64 x 1 x 1 x 1 F32
3 token_embd.weight Token Embedding (W) (~525M) 525336576 4096 x 128256 x 1 x 1 IQ3_S
  • Total elements in base: ( ~1B) 1050677312
  • Percentage of total elements: 13.08%

Block 0 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
4 blk.0.attn_k.weight Block 0 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
5 blk.0.attn_norm.weight Block 0 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
6 blk.0.attn_output.weight Block 0 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
7 blk.0.attn_q.weight Block 0 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
8 blk.0.attn_v.weight Block 0 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
9 blk.0.ffn_down.weight Block 0 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
10 blk.0.ffn_gate.weight Block 0 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
11 blk.0.ffn_norm.weight Block 0 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
12 blk.0.ffn_up.weight Block 0 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.0: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 1 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
13 blk.1.attn_k.weight Block 1 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
14 blk.1.attn_norm.weight Block 1 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
15 blk.1.attn_output.weight Block 1 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
16 blk.1.attn_q.weight Block 1 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
17 blk.1.attn_v.weight Block 1 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
18 blk.1.ffn_down.weight Block 1 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
19 blk.1.ffn_gate.weight Block 1 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
20 blk.1.ffn_norm.weight Block 1 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
21 blk.1.ffn_up.weight Block 1 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.1: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 2 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
22 blk.2.attn_k.weight Block 2 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
23 blk.2.attn_norm.weight Block 2 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
24 blk.2.attn_output.weight Block 2 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
25 blk.2.attn_q.weight Block 2 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
26 blk.2.attn_v.weight Block 2 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
27 blk.2.ffn_down.weight Block 2 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
28 blk.2.ffn_gate.weight Block 2 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
29 blk.2.ffn_norm.weight Block 2 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
30 blk.2.ffn_up.weight Block 2 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.2: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 3 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
31 blk.3.attn_k.weight Block 3 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
32 blk.3.attn_norm.weight Block 3 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
33 blk.3.attn_output.weight Block 3 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
34 blk.3.attn_q.weight Block 3 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
35 blk.3.attn_v.weight Block 3 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
36 blk.3.ffn_down.weight Block 3 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
37 blk.3.ffn_gate.weight Block 3 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
38 blk.3.ffn_norm.weight Block 3 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
39 blk.3.ffn_up.weight Block 3 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.3: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 4 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
40 blk.4.attn_k.weight Block 4 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
41 blk.4.attn_norm.weight Block 4 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
42 blk.4.attn_output.weight Block 4 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
43 blk.4.attn_q.weight Block 4 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
44 blk.4.attn_v.weight Block 4 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
45 blk.4.ffn_down.weight Block 4 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
46 blk.4.ffn_gate.weight Block 4 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
47 blk.4.ffn_norm.weight Block 4 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
48 blk.4.ffn_up.weight Block 4 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.4: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 5 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
49 blk.5.attn_k.weight Block 5 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
50 blk.5.attn_norm.weight Block 5 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
51 blk.5.attn_output.weight Block 5 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
52 blk.5.attn_q.weight Block 5 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
53 blk.5.attn_v.weight Block 5 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
54 blk.5.ffn_down.weight Block 5 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
55 blk.5.ffn_gate.weight Block 5 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
56 blk.5.ffn_norm.weight Block 5 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
57 blk.5.ffn_up.weight Block 5 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.5: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 6 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
58 blk.6.attn_k.weight Block 6 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
59 blk.6.attn_norm.weight Block 6 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
60 blk.6.attn_output.weight Block 6 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
61 blk.6.attn_q.weight Block 6 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
62 blk.6.attn_v.weight Block 6 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
63 blk.6.ffn_down.weight Block 6 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
64 blk.6.ffn_gate.weight Block 6 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
65 blk.6.ffn_norm.weight Block 6 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
66 blk.6.ffn_up.weight Block 6 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.6: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 7 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
67 blk.7.attn_k.weight Block 7 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
68 blk.7.attn_norm.weight Block 7 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
69 blk.7.attn_output.weight Block 7 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
70 blk.7.attn_q.weight Block 7 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
71 blk.7.attn_v.weight Block 7 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
72 blk.7.ffn_down.weight Block 7 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
73 blk.7.ffn_gate.weight Block 7 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
74 blk.7.ffn_norm.weight Block 7 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
75 blk.7.ffn_up.weight Block 7 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.7: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 8 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
76 blk.8.attn_k.weight Block 8 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
77 blk.8.attn_norm.weight Block 8 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
78 blk.8.attn_output.weight Block 8 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
79 blk.8.attn_q.weight Block 8 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
80 blk.8.attn_v.weight Block 8 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
81 blk.8.ffn_down.weight Block 8 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
82 blk.8.ffn_gate.weight Block 8 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
83 blk.8.ffn_norm.weight Block 8 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
84 blk.8.ffn_up.weight Block 8 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.8: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 9 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
85 blk.9.attn_k.weight Block 9 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
86 blk.9.attn_norm.weight Block 9 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
87 blk.9.attn_output.weight Block 9 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
88 blk.9.attn_q.weight Block 9 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
89 blk.9.attn_v.weight Block 9 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
90 blk.9.ffn_down.weight Block 9 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
91 blk.9.ffn_gate.weight Block 9 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
92 blk.9.ffn_norm.weight Block 9 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
93 blk.9.ffn_up.weight Block 9 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.9: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 10 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
94 blk.10.attn_k.weight Block 10 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
95 blk.10.attn_norm.weight Block 10 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
96 blk.10.attn_output.weight Block 10 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
97 blk.10.attn_q.weight Block 10 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
98 blk.10.attn_v.weight Block 10 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
99 blk.10.ffn_down.weight Block 10 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
100 blk.10.ffn_gate.weight Block 10 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
101 blk.10.ffn_norm.weight Block 10 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
102 blk.10.ffn_up.weight Block 10 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.10: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 11 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
103 blk.11.attn_k.weight Block 11 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
104 blk.11.attn_norm.weight Block 11 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
105 blk.11.attn_output.weight Block 11 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
106 blk.11.attn_q.weight Block 11 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
107 blk.11.attn_v.weight Block 11 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
108 blk.11.ffn_down.weight Block 11 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
109 blk.11.ffn_gate.weight Block 11 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
110 blk.11.ffn_norm.weight Block 11 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
111 blk.11.ffn_up.weight Block 11 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.11: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 12 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
112 blk.12.attn_k.weight Block 12 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
113 blk.12.attn_norm.weight Block 12 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
114 blk.12.attn_output.weight Block 12 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
115 blk.12.attn_q.weight Block 12 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
116 blk.12.attn_v.weight Block 12 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
117 blk.12.ffn_down.weight Block 12 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
118 blk.12.ffn_gate.weight Block 12 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
119 blk.12.ffn_norm.weight Block 12 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
120 blk.12.ffn_up.weight Block 12 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.12: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 13 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
121 blk.13.attn_k.weight Block 13 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
122 blk.13.attn_norm.weight Block 13 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
123 blk.13.attn_output.weight Block 13 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
124 blk.13.attn_q.weight Block 13 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
125 blk.13.attn_v.weight Block 13 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
126 blk.13.ffn_down.weight Block 13 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
127 blk.13.ffn_gate.weight Block 13 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
128 blk.13.ffn_norm.weight Block 13 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
129 blk.13.ffn_up.weight Block 13 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.13: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 14 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
130 blk.14.attn_k.weight Block 14 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
131 blk.14.attn_norm.weight Block 14 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
132 blk.14.attn_output.weight Block 14 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
133 blk.14.attn_q.weight Block 14 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
134 blk.14.attn_v.weight Block 14 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
135 blk.14.ffn_down.weight Block 14 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
136 blk.14.ffn_gate.weight Block 14 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
137 blk.14.ffn_norm.weight Block 14 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
138 blk.14.ffn_up.weight Block 14 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.14: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 15 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
139 blk.15.attn_k.weight Block 15 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
140 blk.15.attn_norm.weight Block 15 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
141 blk.15.attn_output.weight Block 15 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
142 blk.15.attn_q.weight Block 15 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
143 blk.15.attn_v.weight Block 15 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_NL
144 blk.15.ffn_down.weight Block 15 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
145 blk.15.ffn_gate.weight Block 15 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
146 blk.15.ffn_norm.weight Block 15 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
147 blk.15.ffn_up.weight Block 15 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ4_NL
  • Total elements in blk.15: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 16 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
148 blk.16.attn_k.weight Block 16 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
149 blk.16.attn_norm.weight Block 16 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
150 blk.16.attn_output.weight Block 16 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
151 blk.16.attn_q.weight Block 16 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
152 blk.16.attn_v.weight Block 16 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
153 blk.16.ffn_down.weight Block 16 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
154 blk.16.ffn_gate.weight Block 16 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
155 blk.16.ffn_norm.weight Block 16 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
156 blk.16.ffn_up.weight Block 16 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.16: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 17 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
157 blk.17.attn_k.weight Block 17 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
158 blk.17.attn_norm.weight Block 17 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
159 blk.17.attn_output.weight Block 17 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
160 blk.17.attn_q.weight Block 17 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
161 blk.17.attn_v.weight Block 17 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
162 blk.17.ffn_down.weight Block 17 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
163 blk.17.ffn_gate.weight Block 17 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
164 blk.17.ffn_norm.weight Block 17 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
165 blk.17.ffn_up.weight Block 17 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.17: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 18 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
166 blk.18.attn_k.weight Block 18 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
167 blk.18.attn_norm.weight Block 18 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
168 blk.18.attn_output.weight Block 18 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
169 blk.18.attn_q.weight Block 18 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
170 blk.18.attn_v.weight Block 18 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
171 blk.18.ffn_down.weight Block 18 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
172 blk.18.ffn_gate.weight Block 18 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
173 blk.18.ffn_norm.weight Block 18 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
174 blk.18.ffn_up.weight Block 18 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.18: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 19 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
175 blk.19.attn_k.weight Block 19 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
176 blk.19.attn_norm.weight Block 19 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
177 blk.19.attn_output.weight Block 19 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
178 blk.19.attn_q.weight Block 19 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
179 blk.19.attn_v.weight Block 19 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
180 blk.19.ffn_down.weight Block 19 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
181 blk.19.ffn_gate.weight Block 19 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
182 blk.19.ffn_norm.weight Block 19 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
183 blk.19.ffn_up.weight Block 19 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.19: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 20 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
184 blk.20.attn_k.weight Block 20 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
185 blk.20.attn_norm.weight Block 20 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
186 blk.20.attn_output.weight Block 20 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
187 blk.20.attn_q.weight Block 20 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
188 blk.20.attn_v.weight Block 20 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
189 blk.20.ffn_down.weight Block 20 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
190 blk.20.ffn_gate.weight Block 20 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
191 blk.20.ffn_norm.weight Block 20 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
192 blk.20.ffn_up.weight Block 20 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.20: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 21 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
193 blk.21.attn_k.weight Block 21 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
194 blk.21.attn_norm.weight Block 21 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
195 blk.21.attn_output.weight Block 21 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
196 blk.21.attn_q.weight Block 21 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
197 blk.21.attn_v.weight Block 21 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
198 blk.21.ffn_down.weight Block 21 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
199 blk.21.ffn_gate.weight Block 21 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
200 blk.21.ffn_norm.weight Block 21 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
201 blk.21.ffn_up.weight Block 21 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.21: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 22 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
202 blk.22.attn_k.weight Block 22 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
203 blk.22.attn_norm.weight Block 22 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
204 blk.22.attn_output.weight Block 22 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
205 blk.22.attn_q.weight Block 22 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
206 blk.22.attn_v.weight Block 22 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
207 blk.22.ffn_down.weight Block 22 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
208 blk.22.ffn_gate.weight Block 22 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
209 blk.22.ffn_norm.weight Block 22 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
210 blk.22.ffn_up.weight Block 22 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.22: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 23 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
211 blk.23.attn_k.weight Block 23 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
212 blk.23.attn_norm.weight Block 23 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
213 blk.23.attn_output.weight Block 23 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
214 blk.23.attn_q.weight Block 23 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
215 blk.23.attn_v.weight Block 23 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
216 blk.23.ffn_down.weight Block 23 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
217 blk.23.ffn_gate.weight Block 23 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
218 blk.23.ffn_norm.weight Block 23 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
219 blk.23.ffn_up.weight Block 23 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.23: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 24 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
220 blk.24.attn_k.weight Block 24 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
221 blk.24.attn_norm.weight Block 24 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
222 blk.24.attn_output.weight Block 24 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
223 blk.24.attn_q.weight Block 24 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
224 blk.24.attn_v.weight Block 24 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
225 blk.24.ffn_down.weight Block 24 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
226 blk.24.ffn_gate.weight Block 24 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
227 blk.24.ffn_norm.weight Block 24 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
228 blk.24.ffn_up.weight Block 24 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.24: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 25 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
229 blk.25.attn_k.weight Block 25 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
230 blk.25.attn_norm.weight Block 25 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
231 blk.25.attn_output.weight Block 25 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
232 blk.25.attn_q.weight Block 25 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
233 blk.25.attn_v.weight Block 25 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
234 blk.25.ffn_down.weight Block 25 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
235 blk.25.ffn_gate.weight Block 25 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
236 blk.25.ffn_norm.weight Block 25 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
237 blk.25.ffn_up.weight Block 25 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.25: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 26 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
238 blk.26.attn_k.weight Block 26 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
239 blk.26.attn_norm.weight Block 26 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
240 blk.26.attn_output.weight Block 26 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
241 blk.26.attn_q.weight Block 26 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
242 blk.26.attn_v.weight Block 26 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
243 blk.26.ffn_down.weight Block 26 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
244 blk.26.ffn_gate.weight Block 26 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
245 blk.26.ffn_norm.weight Block 26 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
246 blk.26.ffn_up.weight Block 26 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.26: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 27 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
247 blk.27.attn_k.weight Block 27 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
248 blk.27.attn_norm.weight Block 27 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
249 blk.27.attn_output.weight Block 27 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
250 blk.27.attn_q.weight Block 27 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
251 blk.27.attn_v.weight Block 27 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
252 blk.27.ffn_down.weight Block 27 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
253 blk.27.ffn_gate.weight Block 27 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
254 blk.27.ffn_norm.weight Block 27 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
255 blk.27.ffn_up.weight Block 27 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.27: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 28 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
256 blk.28.attn_k.weight Block 28 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
257 blk.28.attn_norm.weight Block 28 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
258 blk.28.attn_output.weight Block 28 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
259 blk.28.attn_q.weight Block 28 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
260 blk.28.attn_v.weight Block 28 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
261 blk.28.ffn_down.weight Block 28 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
262 blk.28.ffn_gate.weight Block 28 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
263 blk.28.ffn_norm.weight Block 28 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
264 blk.28.ffn_up.weight Block 28 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.28: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 29 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
265 blk.29.attn_k.weight Block 29 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
266 blk.29.attn_norm.weight Block 29 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
267 blk.29.attn_output.weight Block 29 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
268 blk.29.attn_q.weight Block 29 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
269 blk.29.attn_v.weight Block 29 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
270 blk.29.ffn_down.weight Block 29 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
271 blk.29.ffn_gate.weight Block 29 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
272 blk.29.ffn_norm.weight Block 29 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
273 blk.29.ffn_up.weight Block 29 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.29: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 30 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
274 blk.30.attn_k.weight Block 30 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
275 blk.30.attn_norm.weight Block 30 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
276 blk.30.attn_output.weight Block 30 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
277 blk.30.attn_q.weight Block 30 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
278 blk.30.attn_v.weight Block 30 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
279 blk.30.ffn_down.weight Block 30 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
280 blk.30.ffn_gate.weight Block 30 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
281 blk.30.ffn_norm.weight Block 30 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
282 blk.30.ffn_up.weight Block 30 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.30: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 31 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
283 blk.31.attn_k.weight Block 31 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ3_S
284 blk.31.attn_norm.weight Block 31 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
285 blk.31.attn_output.weight Block 31 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ4_NL
286 blk.31.attn_q.weight Block 31 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 IQ3_S
287 blk.31.attn_v.weight Block 31 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 IQ4_XS
288 blk.31.ffn_down.weight Block 31 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q5_K
289 blk.31.ffn_gate.weight Block 31 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
290 blk.31.ffn_norm.weight Block 31 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
291 blk.31.ffn_up.weight Block 31 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 IQ3_S
  • Total elements in blk.31: (~218M) 218112000
  • Percentage of total elements: 2.72%