DeepSeek-R1-Distill-Llama-8B-IQ4_NL.gguf - GGUF Internal File Dump
- Endian: LITTLE endian
Key Value Metadata Store
There are 36 key-value pairs in this file
POS | TYPE | Count | Key | Value |
---|---|---|---|---|
1 | UINT32 | 1 | GGUF.version | 3 |
2 | UINT64 | 1 | GGUF.tensor_count | 292 |
3 | UINT64 | 1 | GGUF.kv_count | 33 |
4 | STRING | 1 | general.architecture | llama |
5 | STRING | 1 | general.type | model |
6 | STRING | 1 | general.name | DeepSeek R1 Distill Llama 8B |
7 | STRING | 1 | general.basename | DeepSeek-R1-Distill-Llama |
8 | STRING | 1 | general.size_label | 8B |
9 | STRING | 1 | general.license | mit |
10 | UINT32 | 1 | llama.block_count | 32 |
11 | UINT32 | 1 | llama.context_length | 131072 |
12 | UINT32 | 1 | llama.embedding_length | 4096 |
13 | UINT32 | 1 | llama.feed_forward_length | 14336 |
14 | UINT32 | 1 | llama.attention.head_count | 32 |
15 | UINT32 | 1 | llama.attention.head_count_kv | 8 |
16 | FLOAT32 | 1 | llama.rope.freq_base | 500000.0 |
17 | FLOAT32 | 1 | llama.attention.layer_norm_rms_epsilon | 1e-05 |
18 | UINT32 | 1 | llama.vocab_size | 128256 |
19 | UINT32 | 1 | llama.rope.dimension_count | 128 |
20 | STRING | 1 | tokenizer.ggml.model | gpt2 |
21 | STRING | 1 | tokenizer.ggml.pre | llama-bpe |
22 | [STRING] | 128256 | tokenizer.ggml.tokens | [ ! , " , # , $ , % , ... ] |
23 | [INT32] | 128256 | tokenizer.ggml.token_type | [ 1, 1, 1, 1, 1, 1, 1, ... ] |
24 | [STRING] | 280147 | tokenizer.ggml.merges | [ Ġ Ġ , Ġ ĠĠĠ , ĠĠ ĠĠ , ĠĠĠ Ġ , i n , ... ] |
25 | UINT32 | 1 | tokenizer.ggml.bos_token_id | 128000 |
26 | UINT32 | 1 | tokenizer.ggml.eos_token_id | 128001 |
27 | UINT32 | 1 | tokenizer.ggml.padding_token_id | 128001 |
28 | BOOL | 1 | tokenizer.ggml.add_bos_token | True |
29 | BOOL | 1 | tokenizer.ggml.add_eos_token | False |
30 | STRING | 1 | tokenizer.chat_template | {% if not add_generation_promp ...{{'<|Assistant|>'}}{% endif %} |
31 | UINT32 | 1 | general.quantization_version | 2 |
32 | UINT32 | 1 | general.file_type | 25 |
33 | STRING | 1 | quantize.imatrix.file | ./imatrix/imatrix-DeepSeek-R1-Distill-Llama-8B-small.dat |
34 | STRING | 1 | quantize.imatrix.dataset | ../../datasets/imatrix/calibration_all_small.txt |
35 | INT32 | 1 | quantize.imatrix.entries_count | 225 |
36 | INT32 | 1 | quantize.imatrix.chunks_count | 1130 |
Tensors Overview ~8B Elements
Total number of elements in all tensors: 8030261312 Elements
- DeepSeek-R1-Distill-Llama-8B-IQ4_NL.gguf - GGUF Internal File Dump
- Key Value Metadata Store
- Tensors Overview ~8B Elements
- Tensor Data Offset
- Base Tensor Group : ~1B Elements
- Block 0 Tensor Group : ~218M Elements
- Block 1 Tensor Group : ~218M Elements
- Block 2 Tensor Group : ~218M Elements
- Block 3 Tensor Group : ~218M Elements
- Block 4 Tensor Group : ~218M Elements
- Block 5 Tensor Group : ~218M Elements
- Block 6 Tensor Group : ~218M Elements
- Block 7 Tensor Group : ~218M Elements
- Block 8 Tensor Group : ~218M Elements
- Block 9 Tensor Group : ~218M Elements
- Block 10 Tensor Group : ~218M Elements
- Block 11 Tensor Group : ~218M Elements
- Block 12 Tensor Group : ~218M Elements
- Block 13 Tensor Group : ~218M Elements
- Block 14 Tensor Group : ~218M Elements
- Block 15 Tensor Group : ~218M Elements
- Block 16 Tensor Group : ~218M Elements
- Block 17 Tensor Group : ~218M Elements
- Block 18 Tensor Group : ~218M Elements
- Block 19 Tensor Group : ~218M Elements
- Block 20 Tensor Group : ~218M Elements
- Block 21 Tensor Group : ~218M Elements
- Block 22 Tensor Group : ~218M Elements
- Block 23 Tensor Group : ~218M Elements
- Block 24 Tensor Group : ~218M Elements
- Block 25 Tensor Group : ~218M Elements
- Block 26 Tensor Group : ~218M Elements
- Block 27 Tensor Group : ~218M Elements
- Block 28 Tensor Group : ~218M Elements
- Block 29 Tensor Group : ~218M Elements
- Block 30 Tensor Group : ~218M Elements
- Block 31 Tensor Group : ~218M Elements
Tensor Data Offset
This table contains the offset and data segment relative to start of file
T_ID | Tensor Layer Name | Data Offset (B) | Data Size (B) |
---|---|---|---|
0 | output.weight | 0x779a80 | 0x119d0000 |
1 | output_norm.weight | 0x12149a80 | 0x4000 |
2 | rope_freqs.weight | 0x1214da80 | 0x100 |
3 | token_embd.weight | 0x1214db80 | 0xd746000 |
4 | blk.0.attn_k.weight | 0x1f893b80 | 0x240000 |
5 | blk.0.attn_norm.weight | 0x1fad3b80 | 0x4000 |
6 | blk.0.attn_output.weight | 0x1fad7b80 | 0x900000 |
7 | blk.0.attn_q.weight | 0x203d7b80 | 0x900000 |
8 | blk.0.attn_v.weight | 0x20cd7b80 | 0x240000 |
9 | blk.0.ffn_down.weight | 0x20f17b80 | 0x2680000 |
10 | blk.0.ffn_gate.weight | 0x23597b80 | 0x1f80000 |
11 | blk.0.ffn_norm.weight | 0x25517b80 | 0x4000 |
12 | blk.0.ffn_up.weight | 0x2551bb80 | 0x1f80000 |
13 | blk.1.attn_k.weight | 0x2749bb80 | 0x240000 |
14 | blk.1.attn_norm.weight | 0x276dbb80 | 0x4000 |
15 | blk.1.attn_output.weight | 0x276dfb80 | 0x900000 |
16 | blk.1.attn_q.weight | 0x27fdfb80 | 0x900000 |
17 | blk.1.attn_v.weight | 0x288dfb80 | 0x240000 |
18 | blk.1.ffn_down.weight | 0x28b1fb80 | 0x2680000 |
19 | blk.1.ffn_gate.weight | 0x2b19fb80 | 0x1f80000 |
20 | blk.1.ffn_norm.weight | 0x2d11fb80 | 0x4000 |
21 | blk.1.ffn_up.weight | 0x2d123b80 | 0x1f80000 |
22 | blk.2.attn_k.weight | 0x2f0a3b80 | 0x240000 |
23 | blk.2.attn_norm.weight | 0x2f2e3b80 | 0x4000 |
24 | blk.2.attn_output.weight | 0x2f2e7b80 | 0x900000 |
25 | blk.2.attn_q.weight | 0x2fbe7b80 | 0x900000 |
26 | blk.2.attn_v.weight | 0x304e7b80 | 0x240000 |
27 | blk.2.ffn_down.weight | 0x30727b80 | 0x2680000 |
28 | blk.2.ffn_gate.weight | 0x32da7b80 | 0x1f80000 |
29 | blk.2.ffn_norm.weight | 0x34d27b80 | 0x4000 |
30 | blk.2.ffn_up.weight | 0x34d2bb80 | 0x1f80000 |
31 | blk.3.attn_k.weight | 0x36cabb80 | 0x240000 |
32 | blk.3.attn_norm.weight | 0x36eebb80 | 0x4000 |
33 | blk.3.attn_output.weight | 0x36eefb80 | 0x900000 |
34 | blk.3.attn_q.weight | 0x377efb80 | 0x900000 |
35 | blk.3.attn_v.weight | 0x380efb80 | 0x240000 |
36 | blk.3.ffn_down.weight | 0x3832fb80 | 0x2680000 |
37 | blk.3.ffn_gate.weight | 0x3a9afb80 | 0x1f80000 |
38 | blk.3.ffn_norm.weight | 0x3c92fb80 | 0x4000 |
39 | blk.3.ffn_up.weight | 0x3c933b80 | 0x1f80000 |
40 | blk.4.attn_k.weight | 0x3e8b3b80 | 0x240000 |
41 | blk.4.attn_norm.weight | 0x3eaf3b80 | 0x4000 |
42 | blk.4.attn_output.weight | 0x3eaf7b80 | 0x900000 |
43 | blk.4.attn_q.weight | 0x3f3f7b80 | 0x900000 |
44 | blk.4.attn_v.weight | 0x3fcf7b80 | 0x240000 |
45 | blk.4.ffn_down.weight | 0x3ff37b80 | 0x2680000 |
46 | blk.4.ffn_gate.weight | 0x425b7b80 | 0x1f80000 |
47 | blk.4.ffn_norm.weight | 0x44537b80 | 0x4000 |
48 | blk.4.ffn_up.weight | 0x4453bb80 | 0x1f80000 |
49 | blk.5.attn_k.weight | 0x464bbb80 | 0x240000 |
50 | blk.5.attn_norm.weight | 0x466fbb80 | 0x4000 |
51 | blk.5.attn_output.weight | 0x466ffb80 | 0x900000 |
52 | blk.5.attn_q.weight | 0x46fffb80 | 0x900000 |
53 | blk.5.attn_v.weight | 0x478ffb80 | 0x240000 |
54 | blk.5.ffn_down.weight | 0x47b3fb80 | 0x2680000 |
55 | blk.5.ffn_gate.weight | 0x4a1bfb80 | 0x1f80000 |
56 | blk.5.ffn_norm.weight | 0x4c13fb80 | 0x4000 |
57 | blk.5.ffn_up.weight | 0x4c143b80 | 0x1f80000 |
58 | blk.6.attn_k.weight | 0x4e0c3b80 | 0x240000 |
59 | blk.6.attn_norm.weight | 0x4e303b80 | 0x4000 |
60 | blk.6.attn_output.weight | 0x4e307b80 | 0x900000 |
61 | blk.6.attn_q.weight | 0x4ec07b80 | 0x900000 |
62 | blk.6.attn_v.weight | 0x4f507b80 | 0x240000 |
63 | blk.6.ffn_down.weight | 0x4f747b80 | 0x2680000 |
64 | blk.6.ffn_gate.weight | 0x51dc7b80 | 0x1f80000 |
65 | blk.6.ffn_norm.weight | 0x53d47b80 | 0x4000 |
66 | blk.6.ffn_up.weight | 0x53d4bb80 | 0x1f80000 |
67 | blk.7.attn_k.weight | 0x55ccbb80 | 0x240000 |
68 | blk.7.attn_norm.weight | 0x55f0bb80 | 0x4000 |
69 | blk.7.attn_output.weight | 0x55f0fb80 | 0x900000 |
70 | blk.7.attn_q.weight | 0x5680fb80 | 0x900000 |
71 | blk.7.attn_v.weight | 0x5710fb80 | 0x240000 |
72 | blk.7.ffn_down.weight | 0x5734fb80 | 0x2680000 |
73 | blk.7.ffn_gate.weight | 0x599cfb80 | 0x1f80000 |
74 | blk.7.ffn_norm.weight | 0x5b94fb80 | 0x4000 |
75 | blk.7.ffn_up.weight | 0x5b953b80 | 0x1f80000 |
76 | blk.8.attn_k.weight | 0x5d8d3b80 | 0x240000 |
77 | blk.8.attn_norm.weight | 0x5db13b80 | 0x4000 |
78 | blk.8.attn_output.weight | 0x5db17b80 | 0x900000 |
79 | blk.8.attn_q.weight | 0x5e417b80 | 0x900000 |
80 | blk.8.attn_v.weight | 0x5ed17b80 | 0x240000 |
81 | blk.8.ffn_down.weight | 0x5ef57b80 | 0x2680000 |
82 | blk.8.ffn_gate.weight | 0x615d7b80 | 0x1f80000 |
83 | blk.8.ffn_norm.weight | 0x63557b80 | 0x4000 |
84 | blk.8.ffn_up.weight | 0x6355bb80 | 0x1f80000 |
85 | blk.9.attn_k.weight | 0x654dbb80 | 0x240000 |
86 | blk.9.attn_norm.weight | 0x6571bb80 | 0x4000 |
87 | blk.9.attn_output.weight | 0x6571fb80 | 0x900000 |
88 | blk.9.attn_q.weight | 0x6601fb80 | 0x900000 |
89 | blk.9.attn_v.weight | 0x6691fb80 | 0x240000 |
90 | blk.9.ffn_down.weight | 0x66b5fb80 | 0x2680000 |
91 | blk.9.ffn_gate.weight | 0x691dfb80 | 0x1f80000 |
92 | blk.9.ffn_norm.weight | 0x6b15fb80 | 0x4000 |
93 | blk.9.ffn_up.weight | 0x6b163b80 | 0x1f80000 |
94 | blk.10.attn_k.weight | 0x6d0e3b80 | 0x240000 |
95 | blk.10.attn_norm.weight | 0x6d323b80 | 0x4000 |
96 | blk.10.attn_output.weight | 0x6d327b80 | 0x900000 |
97 | blk.10.attn_q.weight | 0x6dc27b80 | 0x900000 |
98 | blk.10.attn_v.weight | 0x6e527b80 | 0x240000 |
99 | blk.10.ffn_down.weight | 0x6e767b80 | 0x2680000 |
100 | blk.10.ffn_gate.weight | 0x70de7b80 | 0x1f80000 |
101 | blk.10.ffn_norm.weight | 0x72d67b80 | 0x4000 |
102 | blk.10.ffn_up.weight | 0x72d6bb80 | 0x1f80000 |
103 | blk.11.attn_k.weight | 0x74cebb80 | 0x240000 |
104 | blk.11.attn_norm.weight | 0x74f2bb80 | 0x4000 |
105 | blk.11.attn_output.weight | 0x74f2fb80 | 0x900000 |
106 | blk.11.attn_q.weight | 0x7582fb80 | 0x900000 |
107 | blk.11.attn_v.weight | 0x7612fb80 | 0x240000 |
108 | blk.11.ffn_down.weight | 0x7636fb80 | 0x2680000 |
109 | blk.11.ffn_gate.weight | 0x789efb80 | 0x1f80000 |
110 | blk.11.ffn_norm.weight | 0x7a96fb80 | 0x4000 |
111 | blk.11.ffn_up.weight | 0x7a973b80 | 0x1f80000 |
112 | blk.12.attn_k.weight | 0x7c8f3b80 | 0x240000 |
113 | blk.12.attn_norm.weight | 0x7cb33b80 | 0x4000 |
114 | blk.12.attn_output.weight | 0x7cb37b80 | 0x900000 |
115 | blk.12.attn_q.weight | 0x7d437b80 | 0x900000 |
116 | blk.12.attn_v.weight | 0x7dd37b80 | 0x240000 |
117 | blk.12.ffn_down.weight | 0x7df77b80 | 0x2680000 |
118 | blk.12.ffn_gate.weight | 0x805f7b80 | 0x1f80000 |
119 | blk.12.ffn_norm.weight | 0x82577b80 | 0x4000 |
120 | blk.12.ffn_up.weight | 0x8257bb80 | 0x1f80000 |
121 | blk.13.attn_k.weight | 0x844fbb80 | 0x240000 |
122 | blk.13.attn_norm.weight | 0x8473bb80 | 0x4000 |
123 | blk.13.attn_output.weight | 0x8473fb80 | 0x900000 |
124 | blk.13.attn_q.weight | 0x8503fb80 | 0x900000 |
125 | blk.13.attn_v.weight | 0x8593fb80 | 0x240000 |
126 | blk.13.ffn_down.weight | 0x85b7fb80 | 0x2680000 |
127 | blk.13.ffn_gate.weight | 0x881ffb80 | 0x1f80000 |
128 | blk.13.ffn_norm.weight | 0x8a17fb80 | 0x4000 |
129 | blk.13.ffn_up.weight | 0x8a183b80 | 0x1f80000 |
130 | blk.14.attn_k.weight | 0x8c103b80 | 0x240000 |
131 | blk.14.attn_norm.weight | 0x8c343b80 | 0x4000 |
132 | blk.14.attn_output.weight | 0x8c347b80 | 0x900000 |
133 | blk.14.attn_q.weight | 0x8cc47b80 | 0x900000 |
134 | blk.14.attn_v.weight | 0x8d547b80 | 0x240000 |
135 | blk.14.ffn_down.weight | 0x8d787b80 | 0x2680000 |
136 | blk.14.ffn_gate.weight | 0x8fe07b80 | 0x1f80000 |
137 | blk.14.ffn_norm.weight | 0x91d87b80 | 0x4000 |
138 | blk.14.ffn_up.weight | 0x91d8bb80 | 0x1f80000 |
139 | blk.15.attn_k.weight | 0x93d0bb80 | 0x240000 |
140 | blk.15.attn_norm.weight | 0x93f4bb80 | 0x4000 |
141 | blk.15.attn_output.weight | 0x93f4fb80 | 0x900000 |
142 | blk.15.attn_q.weight | 0x9484fb80 | 0x900000 |
143 | blk.15.attn_v.weight | 0x9514fb80 | 0x240000 |
144 | blk.15.ffn_down.weight | 0x9538fb80 | 0x2680000 |
145 | blk.15.ffn_gate.weight | 0x97a0fb80 | 0x1f80000 |
146 | blk.15.ffn_norm.weight | 0x9998fb80 | 0x4000 |
147 | blk.15.ffn_up.weight | 0x99993b80 | 0x1f80000 |
148 | blk.16.attn_k.weight | 0x9b913b80 | 0x1b8000 |
149 | blk.16.attn_norm.weight | 0x9bacbb80 | 0x4000 |
150 | blk.16.attn_output.weight | 0x9bacfb80 | 0x900000 |
151 | blk.16.attn_q.weight | 0x9c3cfb80 | 0x6e0000 |
152 | blk.16.attn_v.weight | 0x9caafb80 | 0x220000 |
153 | blk.16.ffn_down.weight | 0x9cccfb80 | 0x2680000 |
154 | blk.16.ffn_gate.weight | 0x9f34fb80 | 0x1810000 |
155 | blk.16.ffn_norm.weight | 0xa0b5fb80 | 0x4000 |
156 | blk.16.ffn_up.weight | 0xa0b63b80 | 0x1810000 |
157 | blk.17.attn_k.weight | 0xa2373b80 | 0x1b8000 |
158 | blk.17.attn_norm.weight | 0xa252bb80 | 0x4000 |
159 | blk.17.attn_output.weight | 0xa252fb80 | 0x900000 |
160 | blk.17.attn_q.weight | 0xa2e2fb80 | 0x6e0000 |
161 | blk.17.attn_v.weight | 0xa350fb80 | 0x220000 |
162 | blk.17.ffn_down.weight | 0xa372fb80 | 0x2680000 |
163 | blk.17.ffn_gate.weight | 0xa5dafb80 | 0x1810000 |
164 | blk.17.ffn_norm.weight | 0xa75bfb80 | 0x4000 |
165 | blk.17.ffn_up.weight | 0xa75c3b80 | 0x1810000 |
166 | blk.18.attn_k.weight | 0xa8dd3b80 | 0x1b8000 |
167 | blk.18.attn_norm.weight | 0xa8f8bb80 | 0x4000 |
168 | blk.18.attn_output.weight | 0xa8f8fb80 | 0x900000 |
169 | blk.18.attn_q.weight | 0xa988fb80 | 0x6e0000 |
170 | blk.18.attn_v.weight | 0xa9f6fb80 | 0x220000 |
171 | blk.18.ffn_down.weight | 0xaa18fb80 | 0x2680000 |
172 | blk.18.ffn_gate.weight | 0xac80fb80 | 0x1810000 |
173 | blk.18.ffn_norm.weight | 0xae01fb80 | 0x4000 |
174 | blk.18.ffn_up.weight | 0xae023b80 | 0x1810000 |
175 | blk.19.attn_k.weight | 0xaf833b80 | 0x1b8000 |
176 | blk.19.attn_norm.weight | 0xaf9ebb80 | 0x4000 |
177 | blk.19.attn_output.weight | 0xaf9efb80 | 0x900000 |
178 | blk.19.attn_q.weight | 0xb02efb80 | 0x6e0000 |
179 | blk.19.attn_v.weight | 0xb09cfb80 | 0x220000 |
180 | blk.19.ffn_down.weight | 0xb0befb80 | 0x2680000 |
181 | blk.19.ffn_gate.weight | 0xb326fb80 | 0x1810000 |
182 | blk.19.ffn_norm.weight | 0xb4a7fb80 | 0x4000 |
183 | blk.19.ffn_up.weight | 0xb4a83b80 | 0x1810000 |
184 | blk.20.attn_k.weight | 0xb6293b80 | 0x1b8000 |
185 | blk.20.attn_norm.weight | 0xb644bb80 | 0x4000 |
186 | blk.20.attn_output.weight | 0xb644fb80 | 0x900000 |
187 | blk.20.attn_q.weight | 0xb6d4fb80 | 0x6e0000 |
188 | blk.20.attn_v.weight | 0xb742fb80 | 0x220000 |
189 | blk.20.ffn_down.weight | 0xb764fb80 | 0x2680000 |
190 | blk.20.ffn_gate.weight | 0xb9ccfb80 | 0x1810000 |
191 | blk.20.ffn_norm.weight | 0xbb4dfb80 | 0x4000 |
192 | blk.20.ffn_up.weight | 0xbb4e3b80 | 0x1810000 |
193 | blk.21.attn_k.weight | 0xbccf3b80 | 0x1b8000 |
194 | blk.21.attn_norm.weight | 0xbceabb80 | 0x4000 |
195 | blk.21.attn_output.weight | 0xbceafb80 | 0x900000 |
196 | blk.21.attn_q.weight | 0xbd7afb80 | 0x6e0000 |
197 | blk.21.attn_v.weight | 0xbde8fb80 | 0x220000 |
198 | blk.21.ffn_down.weight | 0xbe0afb80 | 0x2680000 |
199 | blk.21.ffn_gate.weight | 0xc072fb80 | 0x1810000 |
200 | blk.21.ffn_norm.weight | 0xc1f3fb80 | 0x4000 |
201 | blk.21.ffn_up.weight | 0xc1f43b80 | 0x1810000 |
202 | blk.22.attn_k.weight | 0xc3753b80 | 0x1b8000 |
203 | blk.22.attn_norm.weight | 0xc390bb80 | 0x4000 |
204 | blk.22.attn_output.weight | 0xc390fb80 | 0x900000 |
205 | blk.22.attn_q.weight | 0xc420fb80 | 0x6e0000 |
206 | blk.22.attn_v.weight | 0xc48efb80 | 0x220000 |
207 | blk.22.ffn_down.weight | 0xc4b0fb80 | 0x2680000 |
208 | blk.22.ffn_gate.weight | 0xc718fb80 | 0x1810000 |
209 | blk.22.ffn_norm.weight | 0xc899fb80 | 0x4000 |
210 | blk.22.ffn_up.weight | 0xc89a3b80 | 0x1810000 |
211 | blk.23.attn_k.weight | 0xca1b3b80 | 0x1b8000 |
212 | blk.23.attn_norm.weight | 0xca36bb80 | 0x4000 |
213 | blk.23.attn_output.weight | 0xca36fb80 | 0x900000 |
214 | blk.23.attn_q.weight | 0xcac6fb80 | 0x6e0000 |
215 | blk.23.attn_v.weight | 0xcb34fb80 | 0x220000 |
216 | blk.23.ffn_down.weight | 0xcb56fb80 | 0x2680000 |
217 | blk.23.ffn_gate.weight | 0xcdbefb80 | 0x1810000 |
218 | blk.23.ffn_norm.weight | 0xcf3ffb80 | 0x4000 |
219 | blk.23.ffn_up.weight | 0xcf403b80 | 0x1810000 |
220 | blk.24.attn_k.weight | 0xd0c13b80 | 0x1b8000 |
221 | blk.24.attn_norm.weight | 0xd0dcbb80 | 0x4000 |
222 | blk.24.attn_output.weight | 0xd0dcfb80 | 0x900000 |
223 | blk.24.attn_q.weight | 0xd16cfb80 | 0x6e0000 |
224 | blk.24.attn_v.weight | 0xd1dafb80 | 0x220000 |
225 | blk.24.ffn_down.weight | 0xd1fcfb80 | 0x2680000 |
226 | blk.24.ffn_gate.weight | 0xd464fb80 | 0x1810000 |
227 | blk.24.ffn_norm.weight | 0xd5e5fb80 | 0x4000 |
228 | blk.24.ffn_up.weight | 0xd5e63b80 | 0x1810000 |
229 | blk.25.attn_k.weight | 0xd7673b80 | 0x1b8000 |
230 | blk.25.attn_norm.weight | 0xd782bb80 | 0x4000 |
231 | blk.25.attn_output.weight | 0xd782fb80 | 0x900000 |
232 | blk.25.attn_q.weight | 0xd812fb80 | 0x6e0000 |
233 | blk.25.attn_v.weight | 0xd880fb80 | 0x220000 |
234 | blk.25.ffn_down.weight | 0xd8a2fb80 | 0x2680000 |
235 | blk.25.ffn_gate.weight | 0xdb0afb80 | 0x1810000 |
236 | blk.25.ffn_norm.weight | 0xdc8bfb80 | 0x4000 |
237 | blk.25.ffn_up.weight | 0xdc8c3b80 | 0x1810000 |
238 | blk.26.attn_k.weight | 0xde0d3b80 | 0x1b8000 |
239 | blk.26.attn_norm.weight | 0xde28bb80 | 0x4000 |
240 | blk.26.attn_output.weight | 0xde28fb80 | 0x900000 |
241 | blk.26.attn_q.weight | 0xdeb8fb80 | 0x6e0000 |
242 | blk.26.attn_v.weight | 0xdf26fb80 | 0x220000 |
243 | blk.26.ffn_down.weight | 0xdf48fb80 | 0x2680000 |
244 | blk.26.ffn_gate.weight | 0xe1b0fb80 | 0x1810000 |
245 | blk.26.ffn_norm.weight | 0xe331fb80 | 0x4000 |
246 | blk.26.ffn_up.weight | 0xe3323b80 | 0x1810000 |
247 | blk.27.attn_k.weight | 0xe4b33b80 | 0x1b8000 |
248 | blk.27.attn_norm.weight | 0xe4cebb80 | 0x4000 |
249 | blk.27.attn_output.weight | 0xe4cefb80 | 0x900000 |
250 | blk.27.attn_q.weight | 0xe55efb80 | 0x6e0000 |
251 | blk.27.attn_v.weight | 0xe5ccfb80 | 0x220000 |
252 | blk.27.ffn_down.weight | 0xe5eefb80 | 0x2680000 |
253 | blk.27.ffn_gate.weight | 0xe856fb80 | 0x1810000 |
254 | blk.27.ffn_norm.weight | 0xe9d7fb80 | 0x4000 |
255 | blk.27.ffn_up.weight | 0xe9d83b80 | 0x1810000 |
256 | blk.28.attn_k.weight | 0xeb593b80 | 0x1b8000 |
257 | blk.28.attn_norm.weight | 0xeb74bb80 | 0x4000 |
258 | blk.28.attn_output.weight | 0xeb74fb80 | 0x900000 |
259 | blk.28.attn_q.weight | 0xec04fb80 | 0x6e0000 |
260 | blk.28.attn_v.weight | 0xec72fb80 | 0x220000 |
261 | blk.28.ffn_down.weight | 0xec94fb80 | 0x2680000 |
262 | blk.28.ffn_gate.weight | 0xeefcfb80 | 0x1810000 |
263 | blk.28.ffn_norm.weight | 0xf07dfb80 | 0x4000 |
264 | blk.28.ffn_up.weight | 0xf07e3b80 | 0x1810000 |
265 | blk.29.attn_k.weight | 0xf1ff3b80 | 0x1b8000 |
266 | blk.29.attn_norm.weight | 0xf21abb80 | 0x4000 |
267 | blk.29.attn_output.weight | 0xf21afb80 | 0x900000 |
268 | blk.29.attn_q.weight | 0xf2aafb80 | 0x6e0000 |
269 | blk.29.attn_v.weight | 0xf318fb80 | 0x220000 |
270 | blk.29.ffn_down.weight | 0xf33afb80 | 0x2680000 |
271 | blk.29.ffn_gate.weight | 0xf5a2fb80 | 0x1810000 |
272 | blk.29.ffn_norm.weight | 0xf723fb80 | 0x4000 |
273 | blk.29.ffn_up.weight | 0xf7243b80 | 0x1810000 |
274 | blk.30.attn_k.weight | 0xf8a53b80 | 0x1b8000 |
275 | blk.30.attn_norm.weight | 0xf8c0bb80 | 0x4000 |
276 | blk.30.attn_output.weight | 0xf8c0fb80 | 0x900000 |
277 | blk.30.attn_q.weight | 0xf950fb80 | 0x6e0000 |
278 | blk.30.attn_v.weight | 0xf9befb80 | 0x220000 |
279 | blk.30.ffn_down.weight | 0xf9e0fb80 | 0x2680000 |
280 | blk.30.ffn_gate.weight | 0xfc48fb80 | 0x1810000 |
281 | blk.30.ffn_norm.weight | 0xfdc9fb80 | 0x4000 |
282 | blk.30.ffn_up.weight | 0xfdca3b80 | 0x1810000 |
283 | blk.31.attn_k.weight | 0xff4b3b80 | 0x1b8000 |
284 | blk.31.attn_norm.weight | 0xff66bb80 | 0x4000 |
285 | blk.31.attn_output.weight | 0xff66fb80 | 0x900000 |
286 | blk.31.attn_q.weight | 0xfff6fb80 | 0x6e0000 |
287 | blk.31.attn_v.weight | 0x10064fb80 | 0x220000 |
288 | blk.31.ffn_down.weight | 0x10086fb80 | 0x2680000 |
289 | blk.31.ffn_gate.weight | 0x102eefb80 | 0x1810000 |
290 | blk.31.ffn_norm.weight | 0x1046ffb80 | 0x4000 |
291 | blk.31.ffn_up.weight | 0x104703b80 | 0x1810000 |
Base Tensor Group : ~1B Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
0 | output.weight | Output (W) | (~525M) 525336576 | 4096 x 128256 x 1 x 1 | IQ4_NL |
1 | output_norm.weight | Output Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
2 | rope_freqs.weight | Rope_Freqs (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
3 | token_embd.weight | Token Embedding (W) | (~525M) 525336576 | 4096 x 128256 x 1 x 1 | IQ3_S |
- Total elements in base: ( ~1B) 1050677312
- Percentage of total elements: 13.08%
Block 0 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
4 | blk.0.attn_k.weight | Block 0 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
5 | blk.0.attn_norm.weight | Block 0 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
6 | blk.0.attn_output.weight | Block 0 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
7 | blk.0.attn_q.weight | Block 0 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
8 | blk.0.attn_v.weight | Block 0 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
9 | blk.0.ffn_down.weight | Block 0 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
10 | blk.0.ffn_gate.weight | Block 0 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
11 | blk.0.ffn_norm.weight | Block 0 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
12 | blk.0.ffn_up.weight | Block 0 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.0: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 1 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
13 | blk.1.attn_k.weight | Block 1 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
14 | blk.1.attn_norm.weight | Block 1 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
15 | blk.1.attn_output.weight | Block 1 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
16 | blk.1.attn_q.weight | Block 1 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
17 | blk.1.attn_v.weight | Block 1 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
18 | blk.1.ffn_down.weight | Block 1 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
19 | blk.1.ffn_gate.weight | Block 1 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
20 | blk.1.ffn_norm.weight | Block 1 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
21 | blk.1.ffn_up.weight | Block 1 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.1: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 2 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
22 | blk.2.attn_k.weight | Block 2 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
23 | blk.2.attn_norm.weight | Block 2 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
24 | blk.2.attn_output.weight | Block 2 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
25 | blk.2.attn_q.weight | Block 2 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
26 | blk.2.attn_v.weight | Block 2 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
27 | blk.2.ffn_down.weight | Block 2 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
28 | blk.2.ffn_gate.weight | Block 2 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
29 | blk.2.ffn_norm.weight | Block 2 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
30 | blk.2.ffn_up.weight | Block 2 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.2: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 3 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
31 | blk.3.attn_k.weight | Block 3 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
32 | blk.3.attn_norm.weight | Block 3 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
33 | blk.3.attn_output.weight | Block 3 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
34 | blk.3.attn_q.weight | Block 3 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
35 | blk.3.attn_v.weight | Block 3 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
36 | blk.3.ffn_down.weight | Block 3 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
37 | blk.3.ffn_gate.weight | Block 3 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
38 | blk.3.ffn_norm.weight | Block 3 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
39 | blk.3.ffn_up.weight | Block 3 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.3: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 4 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
40 | blk.4.attn_k.weight | Block 4 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
41 | blk.4.attn_norm.weight | Block 4 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
42 | blk.4.attn_output.weight | Block 4 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
43 | blk.4.attn_q.weight | Block 4 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
44 | blk.4.attn_v.weight | Block 4 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
45 | blk.4.ffn_down.weight | Block 4 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
46 | blk.4.ffn_gate.weight | Block 4 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
47 | blk.4.ffn_norm.weight | Block 4 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
48 | blk.4.ffn_up.weight | Block 4 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.4: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 5 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
49 | blk.5.attn_k.weight | Block 5 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
50 | blk.5.attn_norm.weight | Block 5 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
51 | blk.5.attn_output.weight | Block 5 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
52 | blk.5.attn_q.weight | Block 5 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
53 | blk.5.attn_v.weight | Block 5 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
54 | blk.5.ffn_down.weight | Block 5 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
55 | blk.5.ffn_gate.weight | Block 5 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
56 | blk.5.ffn_norm.weight | Block 5 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
57 | blk.5.ffn_up.weight | Block 5 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.5: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 6 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
58 | blk.6.attn_k.weight | Block 6 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
59 | blk.6.attn_norm.weight | Block 6 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
60 | blk.6.attn_output.weight | Block 6 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
61 | blk.6.attn_q.weight | Block 6 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
62 | blk.6.attn_v.weight | Block 6 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
63 | blk.6.ffn_down.weight | Block 6 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
64 | blk.6.ffn_gate.weight | Block 6 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
65 | blk.6.ffn_norm.weight | Block 6 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
66 | blk.6.ffn_up.weight | Block 6 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.6: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 7 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
67 | blk.7.attn_k.weight | Block 7 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
68 | blk.7.attn_norm.weight | Block 7 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
69 | blk.7.attn_output.weight | Block 7 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
70 | blk.7.attn_q.weight | Block 7 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
71 | blk.7.attn_v.weight | Block 7 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
72 | blk.7.ffn_down.weight | Block 7 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
73 | blk.7.ffn_gate.weight | Block 7 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
74 | blk.7.ffn_norm.weight | Block 7 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
75 | blk.7.ffn_up.weight | Block 7 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.7: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 8 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
76 | blk.8.attn_k.weight | Block 8 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
77 | blk.8.attn_norm.weight | Block 8 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
78 | blk.8.attn_output.weight | Block 8 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
79 | blk.8.attn_q.weight | Block 8 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
80 | blk.8.attn_v.weight | Block 8 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
81 | blk.8.ffn_down.weight | Block 8 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
82 | blk.8.ffn_gate.weight | Block 8 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
83 | blk.8.ffn_norm.weight | Block 8 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
84 | blk.8.ffn_up.weight | Block 8 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.8: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 9 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
85 | blk.9.attn_k.weight | Block 9 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
86 | blk.9.attn_norm.weight | Block 9 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
87 | blk.9.attn_output.weight | Block 9 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
88 | blk.9.attn_q.weight | Block 9 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
89 | blk.9.attn_v.weight | Block 9 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
90 | blk.9.ffn_down.weight | Block 9 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
91 | blk.9.ffn_gate.weight | Block 9 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
92 | blk.9.ffn_norm.weight | Block 9 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
93 | blk.9.ffn_up.weight | Block 9 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.9: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 10 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
94 | blk.10.attn_k.weight | Block 10 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
95 | blk.10.attn_norm.weight | Block 10 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
96 | blk.10.attn_output.weight | Block 10 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
97 | blk.10.attn_q.weight | Block 10 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
98 | blk.10.attn_v.weight | Block 10 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
99 | blk.10.ffn_down.weight | Block 10 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
100 | blk.10.ffn_gate.weight | Block 10 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
101 | blk.10.ffn_norm.weight | Block 10 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
102 | blk.10.ffn_up.weight | Block 10 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.10: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 11 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
103 | blk.11.attn_k.weight | Block 11 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
104 | blk.11.attn_norm.weight | Block 11 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
105 | blk.11.attn_output.weight | Block 11 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
106 | blk.11.attn_q.weight | Block 11 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
107 | blk.11.attn_v.weight | Block 11 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
108 | blk.11.ffn_down.weight | Block 11 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
109 | blk.11.ffn_gate.weight | Block 11 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
110 | blk.11.ffn_norm.weight | Block 11 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
111 | blk.11.ffn_up.weight | Block 11 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.11: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 12 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
112 | blk.12.attn_k.weight | Block 12 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
113 | blk.12.attn_norm.weight | Block 12 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
114 | blk.12.attn_output.weight | Block 12 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
115 | blk.12.attn_q.weight | Block 12 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
116 | blk.12.attn_v.weight | Block 12 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
117 | blk.12.ffn_down.weight | Block 12 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
118 | blk.12.ffn_gate.weight | Block 12 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
119 | blk.12.ffn_norm.weight | Block 12 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
120 | blk.12.ffn_up.weight | Block 12 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.12: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 13 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
121 | blk.13.attn_k.weight | Block 13 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
122 | blk.13.attn_norm.weight | Block 13 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
123 | blk.13.attn_output.weight | Block 13 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
124 | blk.13.attn_q.weight | Block 13 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
125 | blk.13.attn_v.weight | Block 13 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
126 | blk.13.ffn_down.weight | Block 13 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
127 | blk.13.ffn_gate.weight | Block 13 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
128 | blk.13.ffn_norm.weight | Block 13 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
129 | blk.13.ffn_up.weight | Block 13 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.13: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 14 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
130 | blk.14.attn_k.weight | Block 14 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
131 | blk.14.attn_norm.weight | Block 14 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
132 | blk.14.attn_output.weight | Block 14 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
133 | blk.14.attn_q.weight | Block 14 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
134 | blk.14.attn_v.weight | Block 14 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
135 | blk.14.ffn_down.weight | Block 14 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
136 | blk.14.ffn_gate.weight | Block 14 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
137 | blk.14.ffn_norm.weight | Block 14 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
138 | blk.14.ffn_up.weight | Block 14 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.14: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 15 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
139 | blk.15.attn_k.weight | Block 15 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
140 | blk.15.attn_norm.weight | Block 15 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
141 | blk.15.attn_output.weight | Block 15 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
142 | blk.15.attn_q.weight | Block 15 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
143 | blk.15.attn_v.weight | Block 15 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_NL |
144 | blk.15.ffn_down.weight | Block 15 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
145 | blk.15.ffn_gate.weight | Block 15 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
146 | blk.15.ffn_norm.weight | Block 15 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
147 | blk.15.ffn_up.weight | Block 15 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ4_NL |
- Total elements in blk.15: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 16 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
148 | blk.16.attn_k.weight | Block 16 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
149 | blk.16.attn_norm.weight | Block 16 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
150 | blk.16.attn_output.weight | Block 16 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
151 | blk.16.attn_q.weight | Block 16 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
152 | blk.16.attn_v.weight | Block 16 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
153 | blk.16.ffn_down.weight | Block 16 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
154 | blk.16.ffn_gate.weight | Block 16 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
155 | blk.16.ffn_norm.weight | Block 16 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
156 | blk.16.ffn_up.weight | Block 16 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.16: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 17 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
157 | blk.17.attn_k.weight | Block 17 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
158 | blk.17.attn_norm.weight | Block 17 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
159 | blk.17.attn_output.weight | Block 17 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
160 | blk.17.attn_q.weight | Block 17 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
161 | blk.17.attn_v.weight | Block 17 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
162 | blk.17.ffn_down.weight | Block 17 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
163 | blk.17.ffn_gate.weight | Block 17 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
164 | blk.17.ffn_norm.weight | Block 17 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
165 | blk.17.ffn_up.weight | Block 17 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.17: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 18 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
166 | blk.18.attn_k.weight | Block 18 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
167 | blk.18.attn_norm.weight | Block 18 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
168 | blk.18.attn_output.weight | Block 18 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
169 | blk.18.attn_q.weight | Block 18 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
170 | blk.18.attn_v.weight | Block 18 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
171 | blk.18.ffn_down.weight | Block 18 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
172 | blk.18.ffn_gate.weight | Block 18 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
173 | blk.18.ffn_norm.weight | Block 18 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
174 | blk.18.ffn_up.weight | Block 18 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.18: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 19 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
175 | blk.19.attn_k.weight | Block 19 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
176 | blk.19.attn_norm.weight | Block 19 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
177 | blk.19.attn_output.weight | Block 19 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
178 | blk.19.attn_q.weight | Block 19 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
179 | blk.19.attn_v.weight | Block 19 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
180 | blk.19.ffn_down.weight | Block 19 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
181 | blk.19.ffn_gate.weight | Block 19 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
182 | blk.19.ffn_norm.weight | Block 19 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
183 | blk.19.ffn_up.weight | Block 19 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.19: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 20 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
184 | blk.20.attn_k.weight | Block 20 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
185 | blk.20.attn_norm.weight | Block 20 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
186 | blk.20.attn_output.weight | Block 20 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
187 | blk.20.attn_q.weight | Block 20 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
188 | blk.20.attn_v.weight | Block 20 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
189 | blk.20.ffn_down.weight | Block 20 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
190 | blk.20.ffn_gate.weight | Block 20 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
191 | blk.20.ffn_norm.weight | Block 20 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
192 | blk.20.ffn_up.weight | Block 20 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.20: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 21 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
193 | blk.21.attn_k.weight | Block 21 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
194 | blk.21.attn_norm.weight | Block 21 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
195 | blk.21.attn_output.weight | Block 21 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
196 | blk.21.attn_q.weight | Block 21 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
197 | blk.21.attn_v.weight | Block 21 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
198 | blk.21.ffn_down.weight | Block 21 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
199 | blk.21.ffn_gate.weight | Block 21 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
200 | blk.21.ffn_norm.weight | Block 21 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
201 | blk.21.ffn_up.weight | Block 21 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.21: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 22 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
202 | blk.22.attn_k.weight | Block 22 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
203 | blk.22.attn_norm.weight | Block 22 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
204 | blk.22.attn_output.weight | Block 22 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
205 | blk.22.attn_q.weight | Block 22 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
206 | blk.22.attn_v.weight | Block 22 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
207 | blk.22.ffn_down.weight | Block 22 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
208 | blk.22.ffn_gate.weight | Block 22 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
209 | blk.22.ffn_norm.weight | Block 22 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
210 | blk.22.ffn_up.weight | Block 22 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.22: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 23 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
211 | blk.23.attn_k.weight | Block 23 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
212 | blk.23.attn_norm.weight | Block 23 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
213 | blk.23.attn_output.weight | Block 23 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
214 | blk.23.attn_q.weight | Block 23 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
215 | blk.23.attn_v.weight | Block 23 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
216 | blk.23.ffn_down.weight | Block 23 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
217 | blk.23.ffn_gate.weight | Block 23 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
218 | blk.23.ffn_norm.weight | Block 23 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
219 | blk.23.ffn_up.weight | Block 23 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.23: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 24 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
220 | blk.24.attn_k.weight | Block 24 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
221 | blk.24.attn_norm.weight | Block 24 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
222 | blk.24.attn_output.weight | Block 24 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
223 | blk.24.attn_q.weight | Block 24 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
224 | blk.24.attn_v.weight | Block 24 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
225 | blk.24.ffn_down.weight | Block 24 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
226 | blk.24.ffn_gate.weight | Block 24 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
227 | blk.24.ffn_norm.weight | Block 24 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
228 | blk.24.ffn_up.weight | Block 24 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.24: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 25 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
229 | blk.25.attn_k.weight | Block 25 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
230 | blk.25.attn_norm.weight | Block 25 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
231 | blk.25.attn_output.weight | Block 25 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
232 | blk.25.attn_q.weight | Block 25 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
233 | blk.25.attn_v.weight | Block 25 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
234 | blk.25.ffn_down.weight | Block 25 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
235 | blk.25.ffn_gate.weight | Block 25 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
236 | blk.25.ffn_norm.weight | Block 25 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
237 | blk.25.ffn_up.weight | Block 25 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.25: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 26 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
238 | blk.26.attn_k.weight | Block 26 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
239 | blk.26.attn_norm.weight | Block 26 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
240 | blk.26.attn_output.weight | Block 26 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
241 | blk.26.attn_q.weight | Block 26 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
242 | blk.26.attn_v.weight | Block 26 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
243 | blk.26.ffn_down.weight | Block 26 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
244 | blk.26.ffn_gate.weight | Block 26 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
245 | blk.26.ffn_norm.weight | Block 26 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
246 | blk.26.ffn_up.weight | Block 26 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.26: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 27 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
247 | blk.27.attn_k.weight | Block 27 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
248 | blk.27.attn_norm.weight | Block 27 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
249 | blk.27.attn_output.weight | Block 27 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
250 | blk.27.attn_q.weight | Block 27 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
251 | blk.27.attn_v.weight | Block 27 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
252 | blk.27.ffn_down.weight | Block 27 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
253 | blk.27.ffn_gate.weight | Block 27 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
254 | blk.27.ffn_norm.weight | Block 27 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
255 | blk.27.ffn_up.weight | Block 27 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.27: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 28 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
256 | blk.28.attn_k.weight | Block 28 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
257 | blk.28.attn_norm.weight | Block 28 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
258 | blk.28.attn_output.weight | Block 28 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
259 | blk.28.attn_q.weight | Block 28 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
260 | blk.28.attn_v.weight | Block 28 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
261 | blk.28.ffn_down.weight | Block 28 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
262 | blk.28.ffn_gate.weight | Block 28 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
263 | blk.28.ffn_norm.weight | Block 28 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
264 | blk.28.ffn_up.weight | Block 28 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.28: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 29 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
265 | blk.29.attn_k.weight | Block 29 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
266 | blk.29.attn_norm.weight | Block 29 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
267 | blk.29.attn_output.weight | Block 29 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
268 | blk.29.attn_q.weight | Block 29 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
269 | blk.29.attn_v.weight | Block 29 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
270 | blk.29.ffn_down.weight | Block 29 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
271 | blk.29.ffn_gate.weight | Block 29 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
272 | blk.29.ffn_norm.weight | Block 29 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
273 | blk.29.ffn_up.weight | Block 29 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.29: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 30 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
274 | blk.30.attn_k.weight | Block 30 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
275 | blk.30.attn_norm.weight | Block 30 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
276 | blk.30.attn_output.weight | Block 30 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
277 | blk.30.attn_q.weight | Block 30 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
278 | blk.30.attn_v.weight | Block 30 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
279 | blk.30.ffn_down.weight | Block 30 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
280 | blk.30.ffn_gate.weight | Block 30 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
281 | blk.30.ffn_norm.weight | Block 30 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
282 | blk.30.ffn_up.weight | Block 30 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.30: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 31 Tensor Group : ~218M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
283 | blk.31.attn_k.weight | Block 31 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ3_S |
284 | blk.31.attn_norm.weight | Block 31 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
285 | blk.31.attn_output.weight | Block 31 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ4_NL |
286 | blk.31.attn_q.weight | Block 31 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | IQ3_S |
287 | blk.31.attn_v.weight | Block 31 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | IQ4_XS |
288 | blk.31.ffn_down.weight | Block 31 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q5_K |
289 | blk.31.ffn_gate.weight | Block 31 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
290 | blk.31.ffn_norm.weight | Block 31 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
291 | blk.31.ffn_up.weight | Block 31 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | IQ3_S |
- Total elements in blk.31: (~218M) 218112000
- Percentage of total elements: 2.72%