DeepSeek-R1-Distill-Llama-8B-Q6_K.gguf - GGUF Internal File Dump
- Endian: LITTLE endian
Key Value Metadata Store
There are 36 key-value pairs in this file
| POS | TYPE | Count | Key | Value |
|---|---|---|---|---|
| 1 | UINT32 | 1 | GGUF.version | 3 |
| 2 | UINT64 | 1 | GGUF.tensor_count | 292 |
| 3 | UINT64 | 1 | GGUF.kv_count | 33 |
| 4 | STRING | 1 | general.architecture | llama |
| 5 | STRING | 1 | general.type | model |
| 6 | STRING | 1 | general.name | DeepSeek R1 Distill Llama 8B |
| 7 | STRING | 1 | general.basename | DeepSeek-R1-Distill-Llama |
| 8 | STRING | 1 | general.size_label | 8B |
| 9 | STRING | 1 | general.license | mit |
| 10 | UINT32 | 1 | llama.block_count | 32 |
| 11 | UINT32 | 1 | llama.context_length | 131072 |
| 12 | UINT32 | 1 | llama.embedding_length | 4096 |
| 13 | UINT32 | 1 | llama.feed_forward_length | 14336 |
| 14 | UINT32 | 1 | llama.attention.head_count | 32 |
| 15 | UINT32 | 1 | llama.attention.head_count_kv | 8 |
| 16 | FLOAT32 | 1 | llama.rope.freq_base | 500000.0 |
| 17 | FLOAT32 | 1 | llama.attention.layer_norm_rms_epsilon | 1e-05 |
| 18 | UINT32 | 1 | llama.vocab_size | 128256 |
| 19 | UINT32 | 1 | llama.rope.dimension_count | 128 |
| 20 | STRING | 1 | tokenizer.ggml.model | gpt2 |
| 21 | STRING | 1 | tokenizer.ggml.pre | llama-bpe |
| 22 | [STRING] | 128256 | tokenizer.ggml.tokens | [ !, ", #, $, %, ... ] |
| 23 | [INT32] | 128256 | tokenizer.ggml.token_type | [ 1, 1, 1, 1, 1, 1, 1, ... ] |
| 24 | [STRING] | 280147 | tokenizer.ggml.merges | [ Ġ Ġ, Ġ ĠĠĠ, ĠĠ ĠĠ, ĠĠĠ Ġ, i n, ... ] |
| 25 | UINT32 | 1 | tokenizer.ggml.bos_token_id | 128000 |
| 26 | UINT32 | 1 | tokenizer.ggml.eos_token_id | 128001 |
| 27 | UINT32 | 1 | tokenizer.ggml.padding_token_id | 128001 |
| 28 | BOOL | 1 | tokenizer.ggml.add_bos_token | True |
| 29 | BOOL | 1 | tokenizer.ggml.add_eos_token | False |
| 30 | STRING | 1 | tokenizer.chat_template | {% if not add_generation_promp...{{'<|Assistant|>'}}{% endif %} |
| 31 | UINT32 | 1 | general.quantization_version | 2 |
| 32 | UINT32 | 1 | general.file_type | 18 |
| 33 | STRING | 1 | quantize.imatrix.file | ./imatrix/imatrix-DeepSeek-R1-Distill-Llama-8B-small.dat |
| 34 | STRING | 1 | quantize.imatrix.dataset | ../../datasets/imatrix/calibration_all_small.txt |
| 35 | INT32 | 1 | quantize.imatrix.entries_count | 225 |
| 36 | INT32 | 1 | quantize.imatrix.chunks_count | 1130 |
Tensors Overview ~8B Elements
Total number of elements in all tensors: 8030261312 Elements
- DeepSeek-R1-Distill-Llama-8B-Q6_K.gguf - GGUF Internal File Dump
- Key Value Metadata Store
- Tensors Overview ~8B Elements
- Tensor Data Offset
- Base Tensor Group : ~1B Elements
- Block 0 Tensor Group : ~218M Elements
- Block 1 Tensor Group : ~218M Elements
- Block 2 Tensor Group : ~218M Elements
- Block 3 Tensor Group : ~218M Elements
- Block 4 Tensor Group : ~218M Elements
- Block 5 Tensor Group : ~218M Elements
- Block 6 Tensor Group : ~218M Elements
- Block 7 Tensor Group : ~218M Elements
- Block 8 Tensor Group : ~218M Elements
- Block 9 Tensor Group : ~218M Elements
- Block 10 Tensor Group : ~218M Elements
- Block 11 Tensor Group : ~218M Elements
- Block 12 Tensor Group : ~218M Elements
- Block 13 Tensor Group : ~218M Elements
- Block 14 Tensor Group : ~218M Elements
- Block 15 Tensor Group : ~218M Elements
- Block 16 Tensor Group : ~218M Elements
- Block 17 Tensor Group : ~218M Elements
- Block 18 Tensor Group : ~218M Elements
- Block 19 Tensor Group : ~218M Elements
- Block 20 Tensor Group : ~218M Elements
- Block 21 Tensor Group : ~218M Elements
- Block 22 Tensor Group : ~218M Elements
- Block 23 Tensor Group : ~218M Elements
- Block 24 Tensor Group : ~218M Elements
- Block 25 Tensor Group : ~218M Elements
- Block 26 Tensor Group : ~218M Elements
- Block 27 Tensor Group : ~218M Elements
- Block 28 Tensor Group : ~218M Elements
- Block 29 Tensor Group : ~218M Elements
- Block 30 Tensor Group : ~218M Elements
- Block 31 Tensor Group : ~218M Elements
Tensor Data Offset
This table contains the offset and data segment relative to start of file
| T_ID | Tensor Layer Name | Data Offset (B) | Data Size (B) |
|---|---|---|---|
| 0 | output.weight | 0x779a80 | 0x19afa000 |
| 1 | output_norm.weight | 0x1a273a80 | 0x4000 |
| 2 | rope_freqs.weight | 0x1a277a80 | 0x100 |
| 3 | token_embd.weight | 0x1a277b80 | 0xd746000 |
| 4 | blk.0.attn_k.weight | 0x279bdb80 | 0x348000 |
| 5 | blk.0.attn_norm.weight | 0x27d05b80 | 0x4000 |
| 6 | blk.0.attn_output.weight | 0x27d09b80 | 0xd20000 |
| 7 | blk.0.attn_q.weight | 0x28a29b80 | 0xd20000 |
| 8 | blk.0.attn_v.weight | 0x29749b80 | 0x440000 |
| 9 | blk.0.ffn_down.weight | 0x29b89b80 | 0x3b80000 |
| 10 | blk.0.ffn_gate.weight | 0x2d709b80 | 0x2df0000 |
| 11 | blk.0.ffn_norm.weight | 0x304f9b80 | 0x4000 |
| 12 | blk.0.ffn_up.weight | 0x304fdb80 | 0x2df0000 |
| 13 | blk.1.attn_k.weight | 0x332edb80 | 0x348000 |
| 14 | blk.1.attn_norm.weight | 0x33635b80 | 0x4000 |
| 15 | blk.1.attn_output.weight | 0x33639b80 | 0xd20000 |
| 16 | blk.1.attn_q.weight | 0x34359b80 | 0xd20000 |
| 17 | blk.1.attn_v.weight | 0x35079b80 | 0x440000 |
| 18 | blk.1.ffn_down.weight | 0x354b9b80 | 0x3b80000 |
| 19 | blk.1.ffn_gate.weight | 0x39039b80 | 0x2df0000 |
| 20 | blk.1.ffn_norm.weight | 0x3be29b80 | 0x4000 |
| 21 | blk.1.ffn_up.weight | 0x3be2db80 | 0x2df0000 |
| 22 | blk.2.attn_k.weight | 0x3ec1db80 | 0x348000 |
| 23 | blk.2.attn_norm.weight | 0x3ef65b80 | 0x4000 |
| 24 | blk.2.attn_output.weight | 0x3ef69b80 | 0xd20000 |
| 25 | blk.2.attn_q.weight | 0x3fc89b80 | 0xd20000 |
| 26 | blk.2.attn_v.weight | 0x409a9b80 | 0x440000 |
| 27 | blk.2.ffn_down.weight | 0x40de9b80 | 0x3b80000 |
| 28 | blk.2.ffn_gate.weight | 0x44969b80 | 0x2df0000 |
| 29 | blk.2.ffn_norm.weight | 0x47759b80 | 0x4000 |
| 30 | blk.2.ffn_up.weight | 0x4775db80 | 0x2df0000 |
| 31 | blk.3.attn_k.weight | 0x4a54db80 | 0x348000 |
| 32 | blk.3.attn_norm.weight | 0x4a895b80 | 0x4000 |
| 33 | blk.3.attn_output.weight | 0x4a899b80 | 0xd20000 |
| 34 | blk.3.attn_q.weight | 0x4b5b9b80 | 0xd20000 |
| 35 | blk.3.attn_v.weight | 0x4c2d9b80 | 0x440000 |
| 36 | blk.3.ffn_down.weight | 0x4c719b80 | 0x3b80000 |
| 37 | blk.3.ffn_gate.weight | 0x50299b80 | 0x2df0000 |
| 38 | blk.3.ffn_norm.weight | 0x53089b80 | 0x4000 |
| 39 | blk.3.ffn_up.weight | 0x5308db80 | 0x2df0000 |
| 40 | blk.4.attn_k.weight | 0x55e7db80 | 0x348000 |
| 41 | blk.4.attn_norm.weight | 0x561c5b80 | 0x4000 |
| 42 | blk.4.attn_output.weight | 0x561c9b80 | 0xd20000 |
| 43 | blk.4.attn_q.weight | 0x56ee9b80 | 0xd20000 |
| 44 | blk.4.attn_v.weight | 0x57c09b80 | 0x440000 |
| 45 | blk.4.ffn_down.weight | 0x58049b80 | 0x3b80000 |
| 46 | blk.4.ffn_gate.weight | 0x5bbc9b80 | 0x2df0000 |
| 47 | blk.4.ffn_norm.weight | 0x5e9b9b80 | 0x4000 |
| 48 | blk.4.ffn_up.weight | 0x5e9bdb80 | 0x2df0000 |
| 49 | blk.5.attn_k.weight | 0x617adb80 | 0x348000 |
| 50 | blk.5.attn_norm.weight | 0x61af5b80 | 0x4000 |
| 51 | blk.5.attn_output.weight | 0x61af9b80 | 0xd20000 |
| 52 | blk.5.attn_q.weight | 0x62819b80 | 0xd20000 |
| 53 | blk.5.attn_v.weight | 0x63539b80 | 0x440000 |
| 54 | blk.5.ffn_down.weight | 0x63979b80 | 0x3b80000 |
| 55 | blk.5.ffn_gate.weight | 0x674f9b80 | 0x2df0000 |
| 56 | blk.5.ffn_norm.weight | 0x6a2e9b80 | 0x4000 |
| 57 | blk.5.ffn_up.weight | 0x6a2edb80 | 0x2df0000 |
| 58 | blk.6.attn_k.weight | 0x6d0ddb80 | 0x348000 |
| 59 | blk.6.attn_norm.weight | 0x6d425b80 | 0x4000 |
| 60 | blk.6.attn_output.weight | 0x6d429b80 | 0xd20000 |
| 61 | blk.6.attn_q.weight | 0x6e149b80 | 0xd20000 |
| 62 | blk.6.attn_v.weight | 0x6ee69b80 | 0x440000 |
| 63 | blk.6.ffn_down.weight | 0x6f2a9b80 | 0x3b80000 |
| 64 | blk.6.ffn_gate.weight | 0x72e29b80 | 0x2df0000 |
| 65 | blk.6.ffn_norm.weight | 0x75c19b80 | 0x4000 |
| 66 | blk.6.ffn_up.weight | 0x75c1db80 | 0x2df0000 |
| 67 | blk.7.attn_k.weight | 0x78a0db80 | 0x348000 |
| 68 | blk.7.attn_norm.weight | 0x78d55b80 | 0x4000 |
| 69 | blk.7.attn_output.weight | 0x78d59b80 | 0xd20000 |
| 70 | blk.7.attn_q.weight | 0x79a79b80 | 0xd20000 |
| 71 | blk.7.attn_v.weight | 0x7a799b80 | 0x440000 |
| 72 | blk.7.ffn_down.weight | 0x7abd9b80 | 0x3b80000 |
| 73 | blk.7.ffn_gate.weight | 0x7e759b80 | 0x2df0000 |
| 74 | blk.7.ffn_norm.weight | 0x81549b80 | 0x4000 |
| 75 | blk.7.ffn_up.weight | 0x8154db80 | 0x2df0000 |
| 76 | blk.8.attn_k.weight | 0x8433db80 | 0x348000 |
| 77 | blk.8.attn_norm.weight | 0x84685b80 | 0x4000 |
| 78 | blk.8.attn_output.weight | 0x84689b80 | 0xd20000 |
| 79 | blk.8.attn_q.weight | 0x853a9b80 | 0xd20000 |
| 80 | blk.8.attn_v.weight | 0x860c9b80 | 0x440000 |
| 81 | blk.8.ffn_down.weight | 0x86509b80 | 0x3b80000 |
| 82 | blk.8.ffn_gate.weight | 0x8a089b80 | 0x2df0000 |
| 83 | blk.8.ffn_norm.weight | 0x8ce79b80 | 0x4000 |
| 84 | blk.8.ffn_up.weight | 0x8ce7db80 | 0x2df0000 |
| 85 | blk.9.attn_k.weight | 0x8fc6db80 | 0x348000 |
| 86 | blk.9.attn_norm.weight | 0x8ffb5b80 | 0x4000 |
| 87 | blk.9.attn_output.weight | 0x8ffb9b80 | 0xd20000 |
| 88 | blk.9.attn_q.weight | 0x90cd9b80 | 0xd20000 |
| 89 | blk.9.attn_v.weight | 0x919f9b80 | 0x440000 |
| 90 | blk.9.ffn_down.weight | 0x91e39b80 | 0x3b80000 |
| 91 | blk.9.ffn_gate.weight | 0x959b9b80 | 0x2df0000 |
| 92 | blk.9.ffn_norm.weight | 0x987a9b80 | 0x4000 |
| 93 | blk.9.ffn_up.weight | 0x987adb80 | 0x2df0000 |
| 94 | blk.10.attn_k.weight | 0x9b59db80 | 0x348000 |
| 95 | blk.10.attn_norm.weight | 0x9b8e5b80 | 0x4000 |
| 96 | blk.10.attn_output.weight | 0x9b8e9b80 | 0xd20000 |
| 97 | blk.10.attn_q.weight | 0x9c609b80 | 0xd20000 |
| 98 | blk.10.attn_v.weight | 0x9d329b80 | 0x440000 |
| 99 | blk.10.ffn_down.weight | 0x9d769b80 | 0x3b80000 |
| 100 | blk.10.ffn_gate.weight | 0xa12e9b80 | 0x2df0000 |
| 101 | blk.10.ffn_norm.weight | 0xa40d9b80 | 0x4000 |
| 102 | blk.10.ffn_up.weight | 0xa40ddb80 | 0x2df0000 |
| 103 | blk.11.attn_k.weight | 0xa6ecdb80 | 0x348000 |
| 104 | blk.11.attn_norm.weight | 0xa7215b80 | 0x4000 |
| 105 | blk.11.attn_output.weight | 0xa7219b80 | 0xd20000 |
| 106 | blk.11.attn_q.weight | 0xa7f39b80 | 0xd20000 |
| 107 | blk.11.attn_v.weight | 0xa8c59b80 | 0x440000 |
| 108 | blk.11.ffn_down.weight | 0xa9099b80 | 0x3b80000 |
| 109 | blk.11.ffn_gate.weight | 0xacc19b80 | 0x2df0000 |
| 110 | blk.11.ffn_norm.weight | 0xafa09b80 | 0x4000 |
| 111 | blk.11.ffn_up.weight | 0xafa0db80 | 0x2df0000 |
| 112 | blk.12.attn_k.weight | 0xb27fdb80 | 0x348000 |
| 113 | blk.12.attn_norm.weight | 0xb2b45b80 | 0x4000 |
| 114 | blk.12.attn_output.weight | 0xb2b49b80 | 0xd20000 |
| 115 | blk.12.attn_q.weight | 0xb3869b80 | 0xd20000 |
| 116 | blk.12.attn_v.weight | 0xb4589b80 | 0x440000 |
| 117 | blk.12.ffn_down.weight | 0xb49c9b80 | 0x3b80000 |
| 118 | blk.12.ffn_gate.weight | 0xb8549b80 | 0x2df0000 |
| 119 | blk.12.ffn_norm.weight | 0xbb339b80 | 0x4000 |
| 120 | blk.12.ffn_up.weight | 0xbb33db80 | 0x2df0000 |
| 121 | blk.13.attn_k.weight | 0xbe12db80 | 0x348000 |
| 122 | blk.13.attn_norm.weight | 0xbe475b80 | 0x4000 |
| 123 | blk.13.attn_output.weight | 0xbe479b80 | 0xd20000 |
| 124 | blk.13.attn_q.weight | 0xbf199b80 | 0xd20000 |
| 125 | blk.13.attn_v.weight | 0xbfeb9b80 | 0x440000 |
| 126 | blk.13.ffn_down.weight | 0xc02f9b80 | 0x3b80000 |
| 127 | blk.13.ffn_gate.weight | 0xc3e79b80 | 0x2df0000 |
| 128 | blk.13.ffn_norm.weight | 0xc6c69b80 | 0x4000 |
| 129 | blk.13.ffn_up.weight | 0xc6c6db80 | 0x2df0000 |
| 130 | blk.14.attn_k.weight | 0xc9a5db80 | 0x348000 |
| 131 | blk.14.attn_norm.weight | 0xc9da5b80 | 0x4000 |
| 132 | blk.14.attn_output.weight | 0xc9da9b80 | 0xd20000 |
| 133 | blk.14.attn_q.weight | 0xcaac9b80 | 0xd20000 |
| 134 | blk.14.attn_v.weight | 0xcb7e9b80 | 0x440000 |
| 135 | blk.14.ffn_down.weight | 0xcbc29b80 | 0x3b80000 |
| 136 | blk.14.ffn_gate.weight | 0xcf7a9b80 | 0x2df0000 |
| 137 | blk.14.ffn_norm.weight | 0xd2599b80 | 0x4000 |
| 138 | blk.14.ffn_up.weight | 0xd259db80 | 0x2df0000 |
| 139 | blk.15.attn_k.weight | 0xd538db80 | 0x348000 |
| 140 | blk.15.attn_norm.weight | 0xd56d5b80 | 0x4000 |
| 141 | blk.15.attn_output.weight | 0xd56d9b80 | 0xd20000 |
| 142 | blk.15.attn_q.weight | 0xd63f9b80 | 0xd20000 |
| 143 | blk.15.attn_v.weight | 0xd7119b80 | 0x440000 |
| 144 | blk.15.ffn_down.weight | 0xd7559b80 | 0x3b80000 |
| 145 | blk.15.ffn_gate.weight | 0xdb0d9b80 | 0x2df0000 |
| 146 | blk.15.ffn_norm.weight | 0xddec9b80 | 0x4000 |
| 147 | blk.15.ffn_up.weight | 0xddecdb80 | 0x2df0000 |
| 148 | blk.16.attn_k.weight | 0xe0cbdb80 | 0x2c0000 |
| 149 | blk.16.attn_norm.weight | 0xe0f7db80 | 0x4000 |
| 150 | blk.16.attn_output.weight | 0xe0f81b80 | 0xd20000 |
| 151 | blk.16.attn_q.weight | 0xe1ca1b80 | 0xb00000 |
| 152 | blk.16.attn_v.weight | 0xe27a1b80 | 0x348000 |
| 153 | blk.16.ffn_down.weight | 0xe2ae9b80 | 0x3b80000 |
| 154 | blk.16.ffn_gate.weight | 0xe6669b80 | 0x2680000 |
| 155 | blk.16.ffn_norm.weight | 0xe8ce9b80 | 0x4000 |
| 156 | blk.16.ffn_up.weight | 0xe8cedb80 | 0x2680000 |
| 157 | blk.17.attn_k.weight | 0xeb36db80 | 0x2c0000 |
| 158 | blk.17.attn_norm.weight | 0xeb62db80 | 0x4000 |
| 159 | blk.17.attn_output.weight | 0xeb631b80 | 0xd20000 |
| 160 | blk.17.attn_q.weight | 0xec351b80 | 0xb00000 |
| 161 | blk.17.attn_v.weight | 0xece51b80 | 0x348000 |
| 162 | blk.17.ffn_down.weight | 0xed199b80 | 0x3b80000 |
| 163 | blk.17.ffn_gate.weight | 0xf0d19b80 | 0x2680000 |
| 164 | blk.17.ffn_norm.weight | 0xf3399b80 | 0x4000 |
| 165 | blk.17.ffn_up.weight | 0xf339db80 | 0x2680000 |
| 166 | blk.18.attn_k.weight | 0xf5a1db80 | 0x2c0000 |
| 167 | blk.18.attn_norm.weight | 0xf5cddb80 | 0x4000 |
| 168 | blk.18.attn_output.weight | 0xf5ce1b80 | 0xd20000 |
| 169 | blk.18.attn_q.weight | 0xf6a01b80 | 0xb00000 |
| 170 | blk.18.attn_v.weight | 0xf7501b80 | 0x348000 |
| 171 | blk.18.ffn_down.weight | 0xf7849b80 | 0x3b80000 |
| 172 | blk.18.ffn_gate.weight | 0xfb3c9b80 | 0x2680000 |
| 173 | blk.18.ffn_norm.weight | 0xfda49b80 | 0x4000 |
| 174 | blk.18.ffn_up.weight | 0xfda4db80 | 0x2680000 |
| 175 | blk.19.attn_k.weight | 0x1000cdb80 | 0x2c0000 |
| 176 | blk.19.attn_norm.weight | 0x10038db80 | 0x4000 |
| 177 | blk.19.attn_output.weight | 0x100391b80 | 0xd20000 |
| 178 | blk.19.attn_q.weight | 0x1010b1b80 | 0xb00000 |
| 179 | blk.19.attn_v.weight | 0x101bb1b80 | 0x348000 |
| 180 | blk.19.ffn_down.weight | 0x101ef9b80 | 0x3b80000 |
| 181 | blk.19.ffn_gate.weight | 0x105a79b80 | 0x2680000 |
| 182 | blk.19.ffn_norm.weight | 0x1080f9b80 | 0x4000 |
| 183 | blk.19.ffn_up.weight | 0x1080fdb80 | 0x2680000 |
| 184 | blk.20.attn_k.weight | 0x10a77db80 | 0x2c0000 |
| 185 | blk.20.attn_norm.weight | 0x10aa3db80 | 0x4000 |
| 186 | blk.20.attn_output.weight | 0x10aa41b80 | 0xd20000 |
| 187 | blk.20.attn_q.weight | 0x10b761b80 | 0xb00000 |
| 188 | blk.20.attn_v.weight | 0x10c261b80 | 0x348000 |
| 189 | blk.20.ffn_down.weight | 0x10c5a9b80 | 0x3b80000 |
| 190 | blk.20.ffn_gate.weight | 0x110129b80 | 0x2680000 |
| 191 | blk.20.ffn_norm.weight | 0x1127a9b80 | 0x4000 |
| 192 | blk.20.ffn_up.weight | 0x1127adb80 | 0x2680000 |
| 193 | blk.21.attn_k.weight | 0x114e2db80 | 0x2c0000 |
| 194 | blk.21.attn_norm.weight | 0x1150edb80 | 0x4000 |
| 195 | blk.21.attn_output.weight | 0x1150f1b80 | 0xd20000 |
| 196 | blk.21.attn_q.weight | 0x115e11b80 | 0xb00000 |
| 197 | blk.21.attn_v.weight | 0x116911b80 | 0x348000 |
| 198 | blk.21.ffn_down.weight | 0x116c59b80 | 0x3b80000 |
| 199 | blk.21.ffn_gate.weight | 0x11a7d9b80 | 0x2680000 |
| 200 | blk.21.ffn_norm.weight | 0x11ce59b80 | 0x4000 |
| 201 | blk.21.ffn_up.weight | 0x11ce5db80 | 0x2680000 |
| 202 | blk.22.attn_k.weight | 0x11f4ddb80 | 0x2c0000 |
| 203 | blk.22.attn_norm.weight | 0x11f79db80 | 0x4000 |
| 204 | blk.22.attn_output.weight | 0x11f7a1b80 | 0xd20000 |
| 205 | blk.22.attn_q.weight | 0x1204c1b80 | 0xb00000 |
| 206 | blk.22.attn_v.weight | 0x120fc1b80 | 0x348000 |
| 207 | blk.22.ffn_down.weight | 0x121309b80 | 0x3b80000 |
| 208 | blk.22.ffn_gate.weight | 0x124e89b80 | 0x2680000 |
| 209 | blk.22.ffn_norm.weight | 0x127509b80 | 0x4000 |
| 210 | blk.22.ffn_up.weight | 0x12750db80 | 0x2680000 |
| 211 | blk.23.attn_k.weight | 0x129b8db80 | 0x2c0000 |
| 212 | blk.23.attn_norm.weight | 0x129e4db80 | 0x4000 |
| 213 | blk.23.attn_output.weight | 0x129e51b80 | 0xd20000 |
| 214 | blk.23.attn_q.weight | 0x12ab71b80 | 0xb00000 |
| 215 | blk.23.attn_v.weight | 0x12b671b80 | 0x348000 |
| 216 | blk.23.ffn_down.weight | 0x12b9b9b80 | 0x3b80000 |
| 217 | blk.23.ffn_gate.weight | 0x12f539b80 | 0x2680000 |
| 218 | blk.23.ffn_norm.weight | 0x131bb9b80 | 0x4000 |
| 219 | blk.23.ffn_up.weight | 0x131bbdb80 | 0x2680000 |
| 220 | blk.24.attn_k.weight | 0x13423db80 | 0x2c0000 |
| 221 | blk.24.attn_norm.weight | 0x1344fdb80 | 0x4000 |
| 222 | blk.24.attn_output.weight | 0x134501b80 | 0xd20000 |
| 223 | blk.24.attn_q.weight | 0x135221b80 | 0xb00000 |
| 224 | blk.24.attn_v.weight | 0x135d21b80 | 0x348000 |
| 225 | blk.24.ffn_down.weight | 0x136069b80 | 0x3b80000 |
| 226 | blk.24.ffn_gate.weight | 0x139be9b80 | 0x2680000 |
| 227 | blk.24.ffn_norm.weight | 0x13c269b80 | 0x4000 |
| 228 | blk.24.ffn_up.weight | 0x13c26db80 | 0x2680000 |
| 229 | blk.25.attn_k.weight | 0x13e8edb80 | 0x2c0000 |
| 230 | blk.25.attn_norm.weight | 0x13ebadb80 | 0x4000 |
| 231 | blk.25.attn_output.weight | 0x13ebb1b80 | 0xd20000 |
| 232 | blk.25.attn_q.weight | 0x13f8d1b80 | 0xb00000 |
| 233 | blk.25.attn_v.weight | 0x1403d1b80 | 0x348000 |
| 234 | blk.25.ffn_down.weight | 0x140719b80 | 0x3b80000 |
| 235 | blk.25.ffn_gate.weight | 0x144299b80 | 0x2680000 |
| 236 | blk.25.ffn_norm.weight | 0x146919b80 | 0x4000 |
| 237 | blk.25.ffn_up.weight | 0x14691db80 | 0x2680000 |
| 238 | blk.26.attn_k.weight | 0x148f9db80 | 0x2c0000 |
| 239 | blk.26.attn_norm.weight | 0x14925db80 | 0x4000 |
| 240 | blk.26.attn_output.weight | 0x149261b80 | 0xd20000 |
| 241 | blk.26.attn_q.weight | 0x149f81b80 | 0xb00000 |
| 242 | blk.26.attn_v.weight | 0x14aa81b80 | 0x348000 |
| 243 | blk.26.ffn_down.weight | 0x14adc9b80 | 0x3b80000 |
| 244 | blk.26.ffn_gate.weight | 0x14e949b80 | 0x2680000 |
| 245 | blk.26.ffn_norm.weight | 0x150fc9b80 | 0x4000 |
| 246 | blk.26.ffn_up.weight | 0x150fcdb80 | 0x2680000 |
| 247 | blk.27.attn_k.weight | 0x15364db80 | 0x2c0000 |
| 248 | blk.27.attn_norm.weight | 0x15390db80 | 0x4000 |
| 249 | blk.27.attn_output.weight | 0x153911b80 | 0xd20000 |
| 250 | blk.27.attn_q.weight | 0x154631b80 | 0xb00000 |
| 251 | blk.27.attn_v.weight | 0x155131b80 | 0x348000 |
| 252 | blk.27.ffn_down.weight | 0x155479b80 | 0x3b80000 |
| 253 | blk.27.ffn_gate.weight | 0x158ff9b80 | 0x2680000 |
| 254 | blk.27.ffn_norm.weight | 0x15b679b80 | 0x4000 |
| 255 | blk.27.ffn_up.weight | 0x15b67db80 | 0x2680000 |
| 256 | blk.28.attn_k.weight | 0x15dcfdb80 | 0x2c0000 |
| 257 | blk.28.attn_norm.weight | 0x15dfbdb80 | 0x4000 |
| 258 | blk.28.attn_output.weight | 0x15dfc1b80 | 0xd20000 |
| 259 | blk.28.attn_q.weight | 0x15ece1b80 | 0xb00000 |
| 260 | blk.28.attn_v.weight | 0x15f7e1b80 | 0x348000 |
| 261 | blk.28.ffn_down.weight | 0x15fb29b80 | 0x3b80000 |
| 262 | blk.28.ffn_gate.weight | 0x1636a9b80 | 0x2680000 |
| 263 | blk.28.ffn_norm.weight | 0x165d29b80 | 0x4000 |
| 264 | blk.28.ffn_up.weight | 0x165d2db80 | 0x2680000 |
| 265 | blk.29.attn_k.weight | 0x1683adb80 | 0x2c0000 |
| 266 | blk.29.attn_norm.weight | 0x16866db80 | 0x4000 |
| 267 | blk.29.attn_output.weight | 0x168671b80 | 0xd20000 |
| 268 | blk.29.attn_q.weight | 0x169391b80 | 0xb00000 |
| 269 | blk.29.attn_v.weight | 0x169e91b80 | 0x348000 |
| 270 | blk.29.ffn_down.weight | 0x16a1d9b80 | 0x3b80000 |
| 271 | blk.29.ffn_gate.weight | 0x16dd59b80 | 0x2680000 |
| 272 | blk.29.ffn_norm.weight | 0x1703d9b80 | 0x4000 |
| 273 | blk.29.ffn_up.weight | 0x1703ddb80 | 0x2680000 |
| 274 | blk.30.attn_k.weight | 0x172a5db80 | 0x2c0000 |
| 275 | blk.30.attn_norm.weight | 0x172d1db80 | 0x4000 |
| 276 | blk.30.attn_output.weight | 0x172d21b80 | 0xd20000 |
| 277 | blk.30.attn_q.weight | 0x173a41b80 | 0xb00000 |
| 278 | blk.30.attn_v.weight | 0x174541b80 | 0x348000 |
| 279 | blk.30.ffn_down.weight | 0x174889b80 | 0x3b80000 |
| 280 | blk.30.ffn_gate.weight | 0x178409b80 | 0x2680000 |
| 281 | blk.30.ffn_norm.weight | 0x17aa89b80 | 0x4000 |
| 282 | blk.30.ffn_up.weight | 0x17aa8db80 | 0x2680000 |
| 283 | blk.31.attn_k.weight | 0x17d10db80 | 0x2c0000 |
| 284 | blk.31.attn_norm.weight | 0x17d3cdb80 | 0x4000 |
| 285 | blk.31.attn_output.weight | 0x17d3d1b80 | 0xd20000 |
| 286 | blk.31.attn_q.weight | 0x17e0f1b80 | 0xb00000 |
| 287 | blk.31.attn_v.weight | 0x17ebf1b80 | 0x348000 |
| 288 | blk.31.ffn_down.weight | 0x17ef39b80 | 0x3b80000 |
| 289 | blk.31.ffn_gate.weight | 0x182ab9b80 | 0x2680000 |
| 290 | blk.31.ffn_norm.weight | 0x185139b80 | 0x4000 |
| 291 | blk.31.ffn_up.weight | 0x18513db80 | 0x2680000 |
Base Tensor Group : ~1B Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 0 | output.weight | Output (W) | (~525M) 525336576 | 4096 x 128256 x 1 x 1 | Q6_K |
| 1 | output_norm.weight | Output Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 2 | rope_freqs.weight | Rope_Freqs (W) | ( 64) 64 | 64 x 1 x 1 x 1 | F32 |
| 3 | token_embd.weight | Token Embedding (W) | (~525M) 525336576 | 4096 x 128256 x 1 x 1 | Q3_K |
- Total elements in base: ( ~1B) 1050677312
- Percentage of total elements: 13.08%
Block 0 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 4 | blk.0.attn_k.weight | Block 0 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 5 | blk.0.attn_norm.weight | Block 0 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 6 | blk.0.attn_output.weight | Block 0 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 7 | blk.0.attn_q.weight | Block 0 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 8 | blk.0.attn_v.weight | Block 0 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 9 | blk.0.ffn_down.weight | Block 0 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 10 | blk.0.ffn_gate.weight | Block 0 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 11 | blk.0.ffn_norm.weight | Block 0 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 12 | blk.0.ffn_up.weight | Block 0 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.0: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 1 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 13 | blk.1.attn_k.weight | Block 1 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 14 | blk.1.attn_norm.weight | Block 1 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 15 | blk.1.attn_output.weight | Block 1 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 16 | blk.1.attn_q.weight | Block 1 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 17 | blk.1.attn_v.weight | Block 1 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 18 | blk.1.ffn_down.weight | Block 1 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 19 | blk.1.ffn_gate.weight | Block 1 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 20 | blk.1.ffn_norm.weight | Block 1 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 21 | blk.1.ffn_up.weight | Block 1 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.1: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 2 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 22 | blk.2.attn_k.weight | Block 2 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 23 | blk.2.attn_norm.weight | Block 2 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 24 | blk.2.attn_output.weight | Block 2 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 25 | blk.2.attn_q.weight | Block 2 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 26 | blk.2.attn_v.weight | Block 2 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 27 | blk.2.ffn_down.weight | Block 2 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 28 | blk.2.ffn_gate.weight | Block 2 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 29 | blk.2.ffn_norm.weight | Block 2 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 30 | blk.2.ffn_up.weight | Block 2 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.2: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 3 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 31 | blk.3.attn_k.weight | Block 3 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 32 | blk.3.attn_norm.weight | Block 3 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 33 | blk.3.attn_output.weight | Block 3 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 34 | blk.3.attn_q.weight | Block 3 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 35 | blk.3.attn_v.weight | Block 3 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 36 | blk.3.ffn_down.weight | Block 3 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 37 | blk.3.ffn_gate.weight | Block 3 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 38 | blk.3.ffn_norm.weight | Block 3 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 39 | blk.3.ffn_up.weight | Block 3 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.3: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 4 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 40 | blk.4.attn_k.weight | Block 4 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 41 | blk.4.attn_norm.weight | Block 4 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 42 | blk.4.attn_output.weight | Block 4 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 43 | blk.4.attn_q.weight | Block 4 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 44 | blk.4.attn_v.weight | Block 4 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 45 | blk.4.ffn_down.weight | Block 4 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 46 | blk.4.ffn_gate.weight | Block 4 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 47 | blk.4.ffn_norm.weight | Block 4 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 48 | blk.4.ffn_up.weight | Block 4 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.4: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 5 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 49 | blk.5.attn_k.weight | Block 5 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 50 | blk.5.attn_norm.weight | Block 5 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 51 | blk.5.attn_output.weight | Block 5 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 52 | blk.5.attn_q.weight | Block 5 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 53 | blk.5.attn_v.weight | Block 5 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 54 | blk.5.ffn_down.weight | Block 5 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 55 | blk.5.ffn_gate.weight | Block 5 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 56 | blk.5.ffn_norm.weight | Block 5 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 57 | blk.5.ffn_up.weight | Block 5 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.5: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 6 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 58 | blk.6.attn_k.weight | Block 6 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 59 | blk.6.attn_norm.weight | Block 6 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 60 | blk.6.attn_output.weight | Block 6 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 61 | blk.6.attn_q.weight | Block 6 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 62 | blk.6.attn_v.weight | Block 6 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 63 | blk.6.ffn_down.weight | Block 6 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 64 | blk.6.ffn_gate.weight | Block 6 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 65 | blk.6.ffn_norm.weight | Block 6 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 66 | blk.6.ffn_up.weight | Block 6 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.6: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 7 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 67 | blk.7.attn_k.weight | Block 7 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 68 | blk.7.attn_norm.weight | Block 7 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 69 | blk.7.attn_output.weight | Block 7 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 70 | blk.7.attn_q.weight | Block 7 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 71 | blk.7.attn_v.weight | Block 7 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 72 | blk.7.ffn_down.weight | Block 7 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 73 | blk.7.ffn_gate.weight | Block 7 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 74 | blk.7.ffn_norm.weight | Block 7 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 75 | blk.7.ffn_up.weight | Block 7 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.7: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 8 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 76 | blk.8.attn_k.weight | Block 8 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 77 | blk.8.attn_norm.weight | Block 8 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 78 | blk.8.attn_output.weight | Block 8 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 79 | blk.8.attn_q.weight | Block 8 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 80 | blk.8.attn_v.weight | Block 8 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 81 | blk.8.ffn_down.weight | Block 8 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 82 | blk.8.ffn_gate.weight | Block 8 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 83 | blk.8.ffn_norm.weight | Block 8 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 84 | blk.8.ffn_up.weight | Block 8 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.8: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 9 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 85 | blk.9.attn_k.weight | Block 9 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 86 | blk.9.attn_norm.weight | Block 9 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 87 | blk.9.attn_output.weight | Block 9 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 88 | blk.9.attn_q.weight | Block 9 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 89 | blk.9.attn_v.weight | Block 9 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 90 | blk.9.ffn_down.weight | Block 9 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 91 | blk.9.ffn_gate.weight | Block 9 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 92 | blk.9.ffn_norm.weight | Block 9 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 93 | blk.9.ffn_up.weight | Block 9 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.9: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 10 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 94 | blk.10.attn_k.weight | Block 10 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 95 | blk.10.attn_norm.weight | Block 10 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 96 | blk.10.attn_output.weight | Block 10 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 97 | blk.10.attn_q.weight | Block 10 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 98 | blk.10.attn_v.weight | Block 10 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 99 | blk.10.ffn_down.weight | Block 10 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 100 | blk.10.ffn_gate.weight | Block 10 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 101 | blk.10.ffn_norm.weight | Block 10 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 102 | blk.10.ffn_up.weight | Block 10 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.10: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 11 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 103 | blk.11.attn_k.weight | Block 11 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 104 | blk.11.attn_norm.weight | Block 11 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 105 | blk.11.attn_output.weight | Block 11 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 106 | blk.11.attn_q.weight | Block 11 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 107 | blk.11.attn_v.weight | Block 11 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 108 | blk.11.ffn_down.weight | Block 11 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 109 | blk.11.ffn_gate.weight | Block 11 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 110 | blk.11.ffn_norm.weight | Block 11 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 111 | blk.11.ffn_up.weight | Block 11 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.11: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 12 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 112 | blk.12.attn_k.weight | Block 12 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 113 | blk.12.attn_norm.weight | Block 12 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 114 | blk.12.attn_output.weight | Block 12 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 115 | blk.12.attn_q.weight | Block 12 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 116 | blk.12.attn_v.weight | Block 12 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 117 | blk.12.ffn_down.weight | Block 12 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 118 | blk.12.ffn_gate.weight | Block 12 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 119 | blk.12.ffn_norm.weight | Block 12 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 120 | blk.12.ffn_up.weight | Block 12 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.12: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 13 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 121 | blk.13.attn_k.weight | Block 13 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 122 | blk.13.attn_norm.weight | Block 13 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 123 | blk.13.attn_output.weight | Block 13 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 124 | blk.13.attn_q.weight | Block 13 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 125 | blk.13.attn_v.weight | Block 13 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 126 | blk.13.ffn_down.weight | Block 13 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 127 | blk.13.ffn_gate.weight | Block 13 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 128 | blk.13.ffn_norm.weight | Block 13 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 129 | blk.13.ffn_up.weight | Block 13 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.13: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 14 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 130 | blk.14.attn_k.weight | Block 14 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 131 | blk.14.attn_norm.weight | Block 14 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 132 | blk.14.attn_output.weight | Block 14 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 133 | blk.14.attn_q.weight | Block 14 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 134 | blk.14.attn_v.weight | Block 14 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 135 | blk.14.ffn_down.weight | Block 14 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 136 | blk.14.ffn_gate.weight | Block 14 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 137 | blk.14.ffn_norm.weight | Block 14 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 138 | blk.14.ffn_up.weight | Block 14 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.14: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 15 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 139 | blk.15.attn_k.weight | Block 15 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 140 | blk.15.attn_norm.weight | Block 15 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 141 | blk.15.attn_output.weight | Block 15 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 142 | blk.15.attn_q.weight | Block 15 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 143 | blk.15.attn_v.weight | Block 15 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q8_0 |
| 144 | blk.15.ffn_down.weight | Block 15 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 145 | blk.15.ffn_gate.weight | Block 15 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
| 146 | blk.15.ffn_norm.weight | Block 15 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 147 | blk.15.ffn_up.weight | Block 15 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q6_K |
- Total elements in blk.15: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 16 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 148 | blk.16.attn_k.weight | Block 16 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 149 | blk.16.attn_norm.weight | Block 16 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 150 | blk.16.attn_output.weight | Block 16 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 151 | blk.16.attn_q.weight | Block 16 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 152 | blk.16.attn_v.weight | Block 16 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 153 | blk.16.ffn_down.weight | Block 16 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 154 | blk.16.ffn_gate.weight | Block 16 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 155 | blk.16.ffn_norm.weight | Block 16 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 156 | blk.16.ffn_up.weight | Block 16 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.16: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 17 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 157 | blk.17.attn_k.weight | Block 17 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 158 | blk.17.attn_norm.weight | Block 17 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 159 | blk.17.attn_output.weight | Block 17 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 160 | blk.17.attn_q.weight | Block 17 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 161 | blk.17.attn_v.weight | Block 17 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 162 | blk.17.ffn_down.weight | Block 17 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 163 | blk.17.ffn_gate.weight | Block 17 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 164 | blk.17.ffn_norm.weight | Block 17 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 165 | blk.17.ffn_up.weight | Block 17 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.17: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 18 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 166 | blk.18.attn_k.weight | Block 18 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 167 | blk.18.attn_norm.weight | Block 18 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 168 | blk.18.attn_output.weight | Block 18 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 169 | blk.18.attn_q.weight | Block 18 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 170 | blk.18.attn_v.weight | Block 18 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 171 | blk.18.ffn_down.weight | Block 18 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 172 | blk.18.ffn_gate.weight | Block 18 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 173 | blk.18.ffn_norm.weight | Block 18 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 174 | blk.18.ffn_up.weight | Block 18 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.18: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 19 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 175 | blk.19.attn_k.weight | Block 19 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 176 | blk.19.attn_norm.weight | Block 19 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 177 | blk.19.attn_output.weight | Block 19 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 178 | blk.19.attn_q.weight | Block 19 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 179 | blk.19.attn_v.weight | Block 19 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 180 | blk.19.ffn_down.weight | Block 19 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 181 | blk.19.ffn_gate.weight | Block 19 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 182 | blk.19.ffn_norm.weight | Block 19 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 183 | blk.19.ffn_up.weight | Block 19 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.19: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 20 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 184 | blk.20.attn_k.weight | Block 20 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 185 | blk.20.attn_norm.weight | Block 20 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 186 | blk.20.attn_output.weight | Block 20 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 187 | blk.20.attn_q.weight | Block 20 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 188 | blk.20.attn_v.weight | Block 20 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 189 | blk.20.ffn_down.weight | Block 20 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 190 | blk.20.ffn_gate.weight | Block 20 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 191 | blk.20.ffn_norm.weight | Block 20 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 192 | blk.20.ffn_up.weight | Block 20 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.20: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 21 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 193 | blk.21.attn_k.weight | Block 21 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 194 | blk.21.attn_norm.weight | Block 21 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 195 | blk.21.attn_output.weight | Block 21 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 196 | blk.21.attn_q.weight | Block 21 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 197 | blk.21.attn_v.weight | Block 21 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 198 | blk.21.ffn_down.weight | Block 21 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 199 | blk.21.ffn_gate.weight | Block 21 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 200 | blk.21.ffn_norm.weight | Block 21 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 201 | blk.21.ffn_up.weight | Block 21 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.21: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 22 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 202 | blk.22.attn_k.weight | Block 22 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 203 | blk.22.attn_norm.weight | Block 22 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 204 | blk.22.attn_output.weight | Block 22 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 205 | blk.22.attn_q.weight | Block 22 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 206 | blk.22.attn_v.weight | Block 22 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 207 | blk.22.ffn_down.weight | Block 22 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 208 | blk.22.ffn_gate.weight | Block 22 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 209 | blk.22.ffn_norm.weight | Block 22 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 210 | blk.22.ffn_up.weight | Block 22 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.22: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 23 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 211 | blk.23.attn_k.weight | Block 23 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 212 | blk.23.attn_norm.weight | Block 23 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 213 | blk.23.attn_output.weight | Block 23 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 214 | blk.23.attn_q.weight | Block 23 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 215 | blk.23.attn_v.weight | Block 23 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 216 | blk.23.ffn_down.weight | Block 23 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 217 | blk.23.ffn_gate.weight | Block 23 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 218 | blk.23.ffn_norm.weight | Block 23 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 219 | blk.23.ffn_up.weight | Block 23 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.23: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 24 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 220 | blk.24.attn_k.weight | Block 24 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 221 | blk.24.attn_norm.weight | Block 24 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 222 | blk.24.attn_output.weight | Block 24 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 223 | blk.24.attn_q.weight | Block 24 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 224 | blk.24.attn_v.weight | Block 24 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 225 | blk.24.ffn_down.weight | Block 24 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 226 | blk.24.ffn_gate.weight | Block 24 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 227 | blk.24.ffn_norm.weight | Block 24 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 228 | blk.24.ffn_up.weight | Block 24 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.24: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 25 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 229 | blk.25.attn_k.weight | Block 25 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 230 | blk.25.attn_norm.weight | Block 25 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 231 | blk.25.attn_output.weight | Block 25 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 232 | blk.25.attn_q.weight | Block 25 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 233 | blk.25.attn_v.weight | Block 25 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 234 | blk.25.ffn_down.weight | Block 25 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 235 | blk.25.ffn_gate.weight | Block 25 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 236 | blk.25.ffn_norm.weight | Block 25 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 237 | blk.25.ffn_up.weight | Block 25 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.25: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 26 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 238 | blk.26.attn_k.weight | Block 26 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 239 | blk.26.attn_norm.weight | Block 26 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 240 | blk.26.attn_output.weight | Block 26 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 241 | blk.26.attn_q.weight | Block 26 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 242 | blk.26.attn_v.weight | Block 26 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 243 | blk.26.ffn_down.weight | Block 26 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 244 | blk.26.ffn_gate.weight | Block 26 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 245 | blk.26.ffn_norm.weight | Block 26 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 246 | blk.26.ffn_up.weight | Block 26 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.26: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 27 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 247 | blk.27.attn_k.weight | Block 27 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 248 | blk.27.attn_norm.weight | Block 27 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 249 | blk.27.attn_output.weight | Block 27 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 250 | blk.27.attn_q.weight | Block 27 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 251 | blk.27.attn_v.weight | Block 27 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 252 | blk.27.ffn_down.weight | Block 27 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 253 | blk.27.ffn_gate.weight | Block 27 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 254 | blk.27.ffn_norm.weight | Block 27 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 255 | blk.27.ffn_up.weight | Block 27 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.27: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 28 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 256 | blk.28.attn_k.weight | Block 28 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 257 | blk.28.attn_norm.weight | Block 28 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 258 | blk.28.attn_output.weight | Block 28 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 259 | blk.28.attn_q.weight | Block 28 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 260 | blk.28.attn_v.weight | Block 28 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 261 | blk.28.ffn_down.weight | Block 28 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 262 | blk.28.ffn_gate.weight | Block 28 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 263 | blk.28.ffn_norm.weight | Block 28 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 264 | blk.28.ffn_up.weight | Block 28 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.28: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 29 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 265 | blk.29.attn_k.weight | Block 29 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 266 | blk.29.attn_norm.weight | Block 29 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 267 | blk.29.attn_output.weight | Block 29 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 268 | blk.29.attn_q.weight | Block 29 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 269 | blk.29.attn_v.weight | Block 29 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 270 | blk.29.ffn_down.weight | Block 29 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 271 | blk.29.ffn_gate.weight | Block 29 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 272 | blk.29.ffn_norm.weight | Block 29 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 273 | blk.29.ffn_up.weight | Block 29 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.29: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 30 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 274 | blk.30.attn_k.weight | Block 30 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 275 | blk.30.attn_norm.weight | Block 30 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 276 | blk.30.attn_output.weight | Block 30 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 277 | blk.30.attn_q.weight | Block 30 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 278 | blk.30.attn_v.weight | Block 30 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 279 | blk.30.ffn_down.weight | Block 30 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 280 | blk.30.ffn_gate.weight | Block 30 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 281 | blk.30.ffn_norm.weight | Block 30 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 282 | blk.30.ffn_up.weight | Block 30 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.30: (~218M) 218112000
- Percentage of total elements: 2.72%
Block 31 Tensor Group : ~218M Elements
| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
|---|---|---|---|---|---|
| 283 | blk.31.attn_k.weight | Block 31 Attention Key (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q5_K |
| 284 | blk.31.attn_norm.weight | Block 31 Attention Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 285 | blk.31.attn_output.weight | Block 31 Attention Output (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q6_K |
| 286 | blk.31.attn_q.weight | Block 31 Attention Query (W) | (~17M) 16777216 | 4096 x 4096 x 1 x 1 | Q5_K |
| 287 | blk.31.attn_v.weight | Block 31 Attention Value (W) | ( ~4M) 4194304 | 4096 x 1024 x 1 x 1 | Q6_K |
| 288 | blk.31.ffn_down.weight | Block 31 Feed-Forward Network "Down" (W) | (~59M) 58720256 | 14336 x 4096 x 1 x 1 | Q8_0 |
| 289 | blk.31.ffn_gate.weight | Block 31 Feed-Forward Network "Gate" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
| 290 | blk.31.ffn_norm.weight | Block 31 Feed-Forward Network Normalization (W) | ( ~4K) 4096 | 4096 x 1 x 1 x 1 | F32 |
| 291 | blk.31.ffn_up.weight | Block 31 Feed-Forward Network "Up" (W) | (~59M) 58720256 | 4096 x 14336 x 1 x 1 | Q5_K |
- Total elements in blk.31: (~218M) 218112000
- Percentage of total elements: 2.72%