DeepSeek-R1-Distill-Llama-8B-GGUF / scores /DeepSeek-R1-Distill-Llama-8B-Q6_K.md
eaddario's picture
Add GGUF internal file structure
66279ab verified

DeepSeek-R1-Distill-Llama-8B-Q6_K.gguf - GGUF Internal File Dump

  • Endian: LITTLE endian

Key Value Metadata Store

There are 36 key-value pairs in this file

POS TYPE Count Key Value
1 UINT32 1 GGUF.version 3
2 UINT64 1 GGUF.tensor_count 292
3 UINT64 1 GGUF.kv_count 33
4 STRING 1 general.architecture llama
5 STRING 1 general.type model
6 STRING 1 general.name DeepSeek R1 Distill Llama 8B
7 STRING 1 general.basename DeepSeek-R1-Distill-Llama
8 STRING 1 general.size_label 8B
9 STRING 1 general.license mit
10 UINT32 1 llama.block_count 32
11 UINT32 1 llama.context_length 131072
12 UINT32 1 llama.embedding_length 4096
13 UINT32 1 llama.feed_forward_length 14336
14 UINT32 1 llama.attention.head_count 32
15 UINT32 1 llama.attention.head_count_kv 8
16 FLOAT32 1 llama.rope.freq_base 500000.0
17 FLOAT32 1 llama.attention.layer_norm_rms_epsilon 1e-05
18 UINT32 1 llama.vocab_size 128256
19 UINT32 1 llama.rope.dimension_count 128
20 STRING 1 tokenizer.ggml.model gpt2
21 STRING 1 tokenizer.ggml.pre llama-bpe
22 [STRING] 128256 tokenizer.ggml.tokens [ !, ", #, $, %, ... ]
23 [INT32] 128256 tokenizer.ggml.token_type [ 1, 1, 1, 1, 1, 1, 1, ... ]
24 [STRING] 280147 tokenizer.ggml.merges [ Ġ Ġ, Ġ ĠĠĠ, ĠĠ ĠĠ, ĠĠĠ Ġ, i n, ... ]
25 UINT32 1 tokenizer.ggml.bos_token_id 128000
26 UINT32 1 tokenizer.ggml.eos_token_id 128001
27 UINT32 1 tokenizer.ggml.padding_token_id 128001
28 BOOL 1 tokenizer.ggml.add_bos_token True
29 BOOL 1 tokenizer.ggml.add_eos_token False
30 STRING 1 tokenizer.chat_template {% if not add_generation_promp...{{'<|Assistant|>'}}{% endif %}
31 UINT32 1 general.quantization_version 2
32 UINT32 1 general.file_type 18
33 STRING 1 quantize.imatrix.file ./imatrix/imatrix-DeepSeek-R1-Distill-Llama-8B-small.dat
34 STRING 1 quantize.imatrix.dataset ../../datasets/imatrix/calibration_all_small.txt
35 INT32 1 quantize.imatrix.entries_count 225
36 INT32 1 quantize.imatrix.chunks_count 1130

Tensors Overview ~8B Elements

Total number of elements in all tensors: 8030261312 Elements

Tensor Data Offset

This table contains the offset and data segment relative to start of file

T_ID Tensor Layer Name Data Offset (B) Data Size (B)
0 output.weight 0x779a80 0x19afa000
1 output_norm.weight 0x1a273a80 0x4000
2 rope_freqs.weight 0x1a277a80 0x100
3 token_embd.weight 0x1a277b80 0xd746000
4 blk.0.attn_k.weight 0x279bdb80 0x348000
5 blk.0.attn_norm.weight 0x27d05b80 0x4000
6 blk.0.attn_output.weight 0x27d09b80 0xd20000
7 blk.0.attn_q.weight 0x28a29b80 0xd20000
8 blk.0.attn_v.weight 0x29749b80 0x440000
9 blk.0.ffn_down.weight 0x29b89b80 0x3b80000
10 blk.0.ffn_gate.weight 0x2d709b80 0x2df0000
11 blk.0.ffn_norm.weight 0x304f9b80 0x4000
12 blk.0.ffn_up.weight 0x304fdb80 0x2df0000
13 blk.1.attn_k.weight 0x332edb80 0x348000
14 blk.1.attn_norm.weight 0x33635b80 0x4000
15 blk.1.attn_output.weight 0x33639b80 0xd20000
16 blk.1.attn_q.weight 0x34359b80 0xd20000
17 blk.1.attn_v.weight 0x35079b80 0x440000
18 blk.1.ffn_down.weight 0x354b9b80 0x3b80000
19 blk.1.ffn_gate.weight 0x39039b80 0x2df0000
20 blk.1.ffn_norm.weight 0x3be29b80 0x4000
21 blk.1.ffn_up.weight 0x3be2db80 0x2df0000
22 blk.2.attn_k.weight 0x3ec1db80 0x348000
23 blk.2.attn_norm.weight 0x3ef65b80 0x4000
24 blk.2.attn_output.weight 0x3ef69b80 0xd20000
25 blk.2.attn_q.weight 0x3fc89b80 0xd20000
26 blk.2.attn_v.weight 0x409a9b80 0x440000
27 blk.2.ffn_down.weight 0x40de9b80 0x3b80000
28 blk.2.ffn_gate.weight 0x44969b80 0x2df0000
29 blk.2.ffn_norm.weight 0x47759b80 0x4000
30 blk.2.ffn_up.weight 0x4775db80 0x2df0000
31 blk.3.attn_k.weight 0x4a54db80 0x348000
32 blk.3.attn_norm.weight 0x4a895b80 0x4000
33 blk.3.attn_output.weight 0x4a899b80 0xd20000
34 blk.3.attn_q.weight 0x4b5b9b80 0xd20000
35 blk.3.attn_v.weight 0x4c2d9b80 0x440000
36 blk.3.ffn_down.weight 0x4c719b80 0x3b80000
37 blk.3.ffn_gate.weight 0x50299b80 0x2df0000
38 blk.3.ffn_norm.weight 0x53089b80 0x4000
39 blk.3.ffn_up.weight 0x5308db80 0x2df0000
40 blk.4.attn_k.weight 0x55e7db80 0x348000
41 blk.4.attn_norm.weight 0x561c5b80 0x4000
42 blk.4.attn_output.weight 0x561c9b80 0xd20000
43 blk.4.attn_q.weight 0x56ee9b80 0xd20000
44 blk.4.attn_v.weight 0x57c09b80 0x440000
45 blk.4.ffn_down.weight 0x58049b80 0x3b80000
46 blk.4.ffn_gate.weight 0x5bbc9b80 0x2df0000
47 blk.4.ffn_norm.weight 0x5e9b9b80 0x4000
48 blk.4.ffn_up.weight 0x5e9bdb80 0x2df0000
49 blk.5.attn_k.weight 0x617adb80 0x348000
50 blk.5.attn_norm.weight 0x61af5b80 0x4000
51 blk.5.attn_output.weight 0x61af9b80 0xd20000
52 blk.5.attn_q.weight 0x62819b80 0xd20000
53 blk.5.attn_v.weight 0x63539b80 0x440000
54 blk.5.ffn_down.weight 0x63979b80 0x3b80000
55 blk.5.ffn_gate.weight 0x674f9b80 0x2df0000
56 blk.5.ffn_norm.weight 0x6a2e9b80 0x4000
57 blk.5.ffn_up.weight 0x6a2edb80 0x2df0000
58 blk.6.attn_k.weight 0x6d0ddb80 0x348000
59 blk.6.attn_norm.weight 0x6d425b80 0x4000
60 blk.6.attn_output.weight 0x6d429b80 0xd20000
61 blk.6.attn_q.weight 0x6e149b80 0xd20000
62 blk.6.attn_v.weight 0x6ee69b80 0x440000
63 blk.6.ffn_down.weight 0x6f2a9b80 0x3b80000
64 blk.6.ffn_gate.weight 0x72e29b80 0x2df0000
65 blk.6.ffn_norm.weight 0x75c19b80 0x4000
66 blk.6.ffn_up.weight 0x75c1db80 0x2df0000
67 blk.7.attn_k.weight 0x78a0db80 0x348000
68 blk.7.attn_norm.weight 0x78d55b80 0x4000
69 blk.7.attn_output.weight 0x78d59b80 0xd20000
70 blk.7.attn_q.weight 0x79a79b80 0xd20000
71 blk.7.attn_v.weight 0x7a799b80 0x440000
72 blk.7.ffn_down.weight 0x7abd9b80 0x3b80000
73 blk.7.ffn_gate.weight 0x7e759b80 0x2df0000
74 blk.7.ffn_norm.weight 0x81549b80 0x4000
75 blk.7.ffn_up.weight 0x8154db80 0x2df0000
76 blk.8.attn_k.weight 0x8433db80 0x348000
77 blk.8.attn_norm.weight 0x84685b80 0x4000
78 blk.8.attn_output.weight 0x84689b80 0xd20000
79 blk.8.attn_q.weight 0x853a9b80 0xd20000
80 blk.8.attn_v.weight 0x860c9b80 0x440000
81 blk.8.ffn_down.weight 0x86509b80 0x3b80000
82 blk.8.ffn_gate.weight 0x8a089b80 0x2df0000
83 blk.8.ffn_norm.weight 0x8ce79b80 0x4000
84 blk.8.ffn_up.weight 0x8ce7db80 0x2df0000
85 blk.9.attn_k.weight 0x8fc6db80 0x348000
86 blk.9.attn_norm.weight 0x8ffb5b80 0x4000
87 blk.9.attn_output.weight 0x8ffb9b80 0xd20000
88 blk.9.attn_q.weight 0x90cd9b80 0xd20000
89 blk.9.attn_v.weight 0x919f9b80 0x440000
90 blk.9.ffn_down.weight 0x91e39b80 0x3b80000
91 blk.9.ffn_gate.weight 0x959b9b80 0x2df0000
92 blk.9.ffn_norm.weight 0x987a9b80 0x4000
93 blk.9.ffn_up.weight 0x987adb80 0x2df0000
94 blk.10.attn_k.weight 0x9b59db80 0x348000
95 blk.10.attn_norm.weight 0x9b8e5b80 0x4000
96 blk.10.attn_output.weight 0x9b8e9b80 0xd20000
97 blk.10.attn_q.weight 0x9c609b80 0xd20000
98 blk.10.attn_v.weight 0x9d329b80 0x440000
99 blk.10.ffn_down.weight 0x9d769b80 0x3b80000
100 blk.10.ffn_gate.weight 0xa12e9b80 0x2df0000
101 blk.10.ffn_norm.weight 0xa40d9b80 0x4000
102 blk.10.ffn_up.weight 0xa40ddb80 0x2df0000
103 blk.11.attn_k.weight 0xa6ecdb80 0x348000
104 blk.11.attn_norm.weight 0xa7215b80 0x4000
105 blk.11.attn_output.weight 0xa7219b80 0xd20000
106 blk.11.attn_q.weight 0xa7f39b80 0xd20000
107 blk.11.attn_v.weight 0xa8c59b80 0x440000
108 blk.11.ffn_down.weight 0xa9099b80 0x3b80000
109 blk.11.ffn_gate.weight 0xacc19b80 0x2df0000
110 blk.11.ffn_norm.weight 0xafa09b80 0x4000
111 blk.11.ffn_up.weight 0xafa0db80 0x2df0000
112 blk.12.attn_k.weight 0xb27fdb80 0x348000
113 blk.12.attn_norm.weight 0xb2b45b80 0x4000
114 blk.12.attn_output.weight 0xb2b49b80 0xd20000
115 blk.12.attn_q.weight 0xb3869b80 0xd20000
116 blk.12.attn_v.weight 0xb4589b80 0x440000
117 blk.12.ffn_down.weight 0xb49c9b80 0x3b80000
118 blk.12.ffn_gate.weight 0xb8549b80 0x2df0000
119 blk.12.ffn_norm.weight 0xbb339b80 0x4000
120 blk.12.ffn_up.weight 0xbb33db80 0x2df0000
121 blk.13.attn_k.weight 0xbe12db80 0x348000
122 blk.13.attn_norm.weight 0xbe475b80 0x4000
123 blk.13.attn_output.weight 0xbe479b80 0xd20000
124 blk.13.attn_q.weight 0xbf199b80 0xd20000
125 blk.13.attn_v.weight 0xbfeb9b80 0x440000
126 blk.13.ffn_down.weight 0xc02f9b80 0x3b80000
127 blk.13.ffn_gate.weight 0xc3e79b80 0x2df0000
128 blk.13.ffn_norm.weight 0xc6c69b80 0x4000
129 blk.13.ffn_up.weight 0xc6c6db80 0x2df0000
130 blk.14.attn_k.weight 0xc9a5db80 0x348000
131 blk.14.attn_norm.weight 0xc9da5b80 0x4000
132 blk.14.attn_output.weight 0xc9da9b80 0xd20000
133 blk.14.attn_q.weight 0xcaac9b80 0xd20000
134 blk.14.attn_v.weight 0xcb7e9b80 0x440000
135 blk.14.ffn_down.weight 0xcbc29b80 0x3b80000
136 blk.14.ffn_gate.weight 0xcf7a9b80 0x2df0000
137 blk.14.ffn_norm.weight 0xd2599b80 0x4000
138 blk.14.ffn_up.weight 0xd259db80 0x2df0000
139 blk.15.attn_k.weight 0xd538db80 0x348000
140 blk.15.attn_norm.weight 0xd56d5b80 0x4000
141 blk.15.attn_output.weight 0xd56d9b80 0xd20000
142 blk.15.attn_q.weight 0xd63f9b80 0xd20000
143 blk.15.attn_v.weight 0xd7119b80 0x440000
144 blk.15.ffn_down.weight 0xd7559b80 0x3b80000
145 blk.15.ffn_gate.weight 0xdb0d9b80 0x2df0000
146 blk.15.ffn_norm.weight 0xddec9b80 0x4000
147 blk.15.ffn_up.weight 0xddecdb80 0x2df0000
148 blk.16.attn_k.weight 0xe0cbdb80 0x2c0000
149 blk.16.attn_norm.weight 0xe0f7db80 0x4000
150 blk.16.attn_output.weight 0xe0f81b80 0xd20000
151 blk.16.attn_q.weight 0xe1ca1b80 0xb00000
152 blk.16.attn_v.weight 0xe27a1b80 0x348000
153 blk.16.ffn_down.weight 0xe2ae9b80 0x3b80000
154 blk.16.ffn_gate.weight 0xe6669b80 0x2680000
155 blk.16.ffn_norm.weight 0xe8ce9b80 0x4000
156 blk.16.ffn_up.weight 0xe8cedb80 0x2680000
157 blk.17.attn_k.weight 0xeb36db80 0x2c0000
158 blk.17.attn_norm.weight 0xeb62db80 0x4000
159 blk.17.attn_output.weight 0xeb631b80 0xd20000
160 blk.17.attn_q.weight 0xec351b80 0xb00000
161 blk.17.attn_v.weight 0xece51b80 0x348000
162 blk.17.ffn_down.weight 0xed199b80 0x3b80000
163 blk.17.ffn_gate.weight 0xf0d19b80 0x2680000
164 blk.17.ffn_norm.weight 0xf3399b80 0x4000
165 blk.17.ffn_up.weight 0xf339db80 0x2680000
166 blk.18.attn_k.weight 0xf5a1db80 0x2c0000
167 blk.18.attn_norm.weight 0xf5cddb80 0x4000
168 blk.18.attn_output.weight 0xf5ce1b80 0xd20000
169 blk.18.attn_q.weight 0xf6a01b80 0xb00000
170 blk.18.attn_v.weight 0xf7501b80 0x348000
171 blk.18.ffn_down.weight 0xf7849b80 0x3b80000
172 blk.18.ffn_gate.weight 0xfb3c9b80 0x2680000
173 blk.18.ffn_norm.weight 0xfda49b80 0x4000
174 blk.18.ffn_up.weight 0xfda4db80 0x2680000
175 blk.19.attn_k.weight 0x1000cdb80 0x2c0000
176 blk.19.attn_norm.weight 0x10038db80 0x4000
177 blk.19.attn_output.weight 0x100391b80 0xd20000
178 blk.19.attn_q.weight 0x1010b1b80 0xb00000
179 blk.19.attn_v.weight 0x101bb1b80 0x348000
180 blk.19.ffn_down.weight 0x101ef9b80 0x3b80000
181 blk.19.ffn_gate.weight 0x105a79b80 0x2680000
182 blk.19.ffn_norm.weight 0x1080f9b80 0x4000
183 blk.19.ffn_up.weight 0x1080fdb80 0x2680000
184 blk.20.attn_k.weight 0x10a77db80 0x2c0000
185 blk.20.attn_norm.weight 0x10aa3db80 0x4000
186 blk.20.attn_output.weight 0x10aa41b80 0xd20000
187 blk.20.attn_q.weight 0x10b761b80 0xb00000
188 blk.20.attn_v.weight 0x10c261b80 0x348000
189 blk.20.ffn_down.weight 0x10c5a9b80 0x3b80000
190 blk.20.ffn_gate.weight 0x110129b80 0x2680000
191 blk.20.ffn_norm.weight 0x1127a9b80 0x4000
192 blk.20.ffn_up.weight 0x1127adb80 0x2680000
193 blk.21.attn_k.weight 0x114e2db80 0x2c0000
194 blk.21.attn_norm.weight 0x1150edb80 0x4000
195 blk.21.attn_output.weight 0x1150f1b80 0xd20000
196 blk.21.attn_q.weight 0x115e11b80 0xb00000
197 blk.21.attn_v.weight 0x116911b80 0x348000
198 blk.21.ffn_down.weight 0x116c59b80 0x3b80000
199 blk.21.ffn_gate.weight 0x11a7d9b80 0x2680000
200 blk.21.ffn_norm.weight 0x11ce59b80 0x4000
201 blk.21.ffn_up.weight 0x11ce5db80 0x2680000
202 blk.22.attn_k.weight 0x11f4ddb80 0x2c0000
203 blk.22.attn_norm.weight 0x11f79db80 0x4000
204 blk.22.attn_output.weight 0x11f7a1b80 0xd20000
205 blk.22.attn_q.weight 0x1204c1b80 0xb00000
206 blk.22.attn_v.weight 0x120fc1b80 0x348000
207 blk.22.ffn_down.weight 0x121309b80 0x3b80000
208 blk.22.ffn_gate.weight 0x124e89b80 0x2680000
209 blk.22.ffn_norm.weight 0x127509b80 0x4000
210 blk.22.ffn_up.weight 0x12750db80 0x2680000
211 blk.23.attn_k.weight 0x129b8db80 0x2c0000
212 blk.23.attn_norm.weight 0x129e4db80 0x4000
213 blk.23.attn_output.weight 0x129e51b80 0xd20000
214 blk.23.attn_q.weight 0x12ab71b80 0xb00000
215 blk.23.attn_v.weight 0x12b671b80 0x348000
216 blk.23.ffn_down.weight 0x12b9b9b80 0x3b80000
217 blk.23.ffn_gate.weight 0x12f539b80 0x2680000
218 blk.23.ffn_norm.weight 0x131bb9b80 0x4000
219 blk.23.ffn_up.weight 0x131bbdb80 0x2680000
220 blk.24.attn_k.weight 0x13423db80 0x2c0000
221 blk.24.attn_norm.weight 0x1344fdb80 0x4000
222 blk.24.attn_output.weight 0x134501b80 0xd20000
223 blk.24.attn_q.weight 0x135221b80 0xb00000
224 blk.24.attn_v.weight 0x135d21b80 0x348000
225 blk.24.ffn_down.weight 0x136069b80 0x3b80000
226 blk.24.ffn_gate.weight 0x139be9b80 0x2680000
227 blk.24.ffn_norm.weight 0x13c269b80 0x4000
228 blk.24.ffn_up.weight 0x13c26db80 0x2680000
229 blk.25.attn_k.weight 0x13e8edb80 0x2c0000
230 blk.25.attn_norm.weight 0x13ebadb80 0x4000
231 blk.25.attn_output.weight 0x13ebb1b80 0xd20000
232 blk.25.attn_q.weight 0x13f8d1b80 0xb00000
233 blk.25.attn_v.weight 0x1403d1b80 0x348000
234 blk.25.ffn_down.weight 0x140719b80 0x3b80000
235 blk.25.ffn_gate.weight 0x144299b80 0x2680000
236 blk.25.ffn_norm.weight 0x146919b80 0x4000
237 blk.25.ffn_up.weight 0x14691db80 0x2680000
238 blk.26.attn_k.weight 0x148f9db80 0x2c0000
239 blk.26.attn_norm.weight 0x14925db80 0x4000
240 blk.26.attn_output.weight 0x149261b80 0xd20000
241 blk.26.attn_q.weight 0x149f81b80 0xb00000
242 blk.26.attn_v.weight 0x14aa81b80 0x348000
243 blk.26.ffn_down.weight 0x14adc9b80 0x3b80000
244 blk.26.ffn_gate.weight 0x14e949b80 0x2680000
245 blk.26.ffn_norm.weight 0x150fc9b80 0x4000
246 blk.26.ffn_up.weight 0x150fcdb80 0x2680000
247 blk.27.attn_k.weight 0x15364db80 0x2c0000
248 blk.27.attn_norm.weight 0x15390db80 0x4000
249 blk.27.attn_output.weight 0x153911b80 0xd20000
250 blk.27.attn_q.weight 0x154631b80 0xb00000
251 blk.27.attn_v.weight 0x155131b80 0x348000
252 blk.27.ffn_down.weight 0x155479b80 0x3b80000
253 blk.27.ffn_gate.weight 0x158ff9b80 0x2680000
254 blk.27.ffn_norm.weight 0x15b679b80 0x4000
255 blk.27.ffn_up.weight 0x15b67db80 0x2680000
256 blk.28.attn_k.weight 0x15dcfdb80 0x2c0000
257 blk.28.attn_norm.weight 0x15dfbdb80 0x4000
258 blk.28.attn_output.weight 0x15dfc1b80 0xd20000
259 blk.28.attn_q.weight 0x15ece1b80 0xb00000
260 blk.28.attn_v.weight 0x15f7e1b80 0x348000
261 blk.28.ffn_down.weight 0x15fb29b80 0x3b80000
262 blk.28.ffn_gate.weight 0x1636a9b80 0x2680000
263 blk.28.ffn_norm.weight 0x165d29b80 0x4000
264 blk.28.ffn_up.weight 0x165d2db80 0x2680000
265 blk.29.attn_k.weight 0x1683adb80 0x2c0000
266 blk.29.attn_norm.weight 0x16866db80 0x4000
267 blk.29.attn_output.weight 0x168671b80 0xd20000
268 blk.29.attn_q.weight 0x169391b80 0xb00000
269 blk.29.attn_v.weight 0x169e91b80 0x348000
270 blk.29.ffn_down.weight 0x16a1d9b80 0x3b80000
271 blk.29.ffn_gate.weight 0x16dd59b80 0x2680000
272 blk.29.ffn_norm.weight 0x1703d9b80 0x4000
273 blk.29.ffn_up.weight 0x1703ddb80 0x2680000
274 blk.30.attn_k.weight 0x172a5db80 0x2c0000
275 blk.30.attn_norm.weight 0x172d1db80 0x4000
276 blk.30.attn_output.weight 0x172d21b80 0xd20000
277 blk.30.attn_q.weight 0x173a41b80 0xb00000
278 blk.30.attn_v.weight 0x174541b80 0x348000
279 blk.30.ffn_down.weight 0x174889b80 0x3b80000
280 blk.30.ffn_gate.weight 0x178409b80 0x2680000
281 blk.30.ffn_norm.weight 0x17aa89b80 0x4000
282 blk.30.ffn_up.weight 0x17aa8db80 0x2680000
283 blk.31.attn_k.weight 0x17d10db80 0x2c0000
284 blk.31.attn_norm.weight 0x17d3cdb80 0x4000
285 blk.31.attn_output.weight 0x17d3d1b80 0xd20000
286 blk.31.attn_q.weight 0x17e0f1b80 0xb00000
287 blk.31.attn_v.weight 0x17ebf1b80 0x348000
288 blk.31.ffn_down.weight 0x17ef39b80 0x3b80000
289 blk.31.ffn_gate.weight 0x182ab9b80 0x2680000
290 blk.31.ffn_norm.weight 0x185139b80 0x4000
291 blk.31.ffn_up.weight 0x18513db80 0x2680000

Base Tensor Group : ~1B Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
0 output.weight Output (W) (~525M) 525336576 4096 x 128256 x 1 x 1 Q6_K
1 output_norm.weight Output Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
2 rope_freqs.weight Rope_Freqs (W) ( 64) 64 64 x 1 x 1 x 1 F32
3 token_embd.weight Token Embedding (W) (~525M) 525336576 4096 x 128256 x 1 x 1 Q3_K
  • Total elements in base: ( ~1B) 1050677312
  • Percentage of total elements: 13.08%

Block 0 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
4 blk.0.attn_k.weight Block 0 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
5 blk.0.attn_norm.weight Block 0 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
6 blk.0.attn_output.weight Block 0 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
7 blk.0.attn_q.weight Block 0 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
8 blk.0.attn_v.weight Block 0 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
9 blk.0.ffn_down.weight Block 0 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
10 blk.0.ffn_gate.weight Block 0 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
11 blk.0.ffn_norm.weight Block 0 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
12 blk.0.ffn_up.weight Block 0 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.0: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 1 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
13 blk.1.attn_k.weight Block 1 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
14 blk.1.attn_norm.weight Block 1 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
15 blk.1.attn_output.weight Block 1 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
16 blk.1.attn_q.weight Block 1 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
17 blk.1.attn_v.weight Block 1 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
18 blk.1.ffn_down.weight Block 1 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
19 blk.1.ffn_gate.weight Block 1 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
20 blk.1.ffn_norm.weight Block 1 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
21 blk.1.ffn_up.weight Block 1 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.1: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 2 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
22 blk.2.attn_k.weight Block 2 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
23 blk.2.attn_norm.weight Block 2 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
24 blk.2.attn_output.weight Block 2 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
25 blk.2.attn_q.weight Block 2 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
26 blk.2.attn_v.weight Block 2 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
27 blk.2.ffn_down.weight Block 2 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
28 blk.2.ffn_gate.weight Block 2 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
29 blk.2.ffn_norm.weight Block 2 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
30 blk.2.ffn_up.weight Block 2 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.2: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 3 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
31 blk.3.attn_k.weight Block 3 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
32 blk.3.attn_norm.weight Block 3 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
33 blk.3.attn_output.weight Block 3 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
34 blk.3.attn_q.weight Block 3 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
35 blk.3.attn_v.weight Block 3 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
36 blk.3.ffn_down.weight Block 3 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
37 blk.3.ffn_gate.weight Block 3 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
38 blk.3.ffn_norm.weight Block 3 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
39 blk.3.ffn_up.weight Block 3 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.3: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 4 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
40 blk.4.attn_k.weight Block 4 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
41 blk.4.attn_norm.weight Block 4 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
42 blk.4.attn_output.weight Block 4 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
43 blk.4.attn_q.weight Block 4 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
44 blk.4.attn_v.weight Block 4 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
45 blk.4.ffn_down.weight Block 4 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
46 blk.4.ffn_gate.weight Block 4 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
47 blk.4.ffn_norm.weight Block 4 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
48 blk.4.ffn_up.weight Block 4 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.4: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 5 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
49 blk.5.attn_k.weight Block 5 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
50 blk.5.attn_norm.weight Block 5 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
51 blk.5.attn_output.weight Block 5 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
52 blk.5.attn_q.weight Block 5 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
53 blk.5.attn_v.weight Block 5 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
54 blk.5.ffn_down.weight Block 5 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
55 blk.5.ffn_gate.weight Block 5 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
56 blk.5.ffn_norm.weight Block 5 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
57 blk.5.ffn_up.weight Block 5 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.5: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 6 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
58 blk.6.attn_k.weight Block 6 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
59 blk.6.attn_norm.weight Block 6 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
60 blk.6.attn_output.weight Block 6 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
61 blk.6.attn_q.weight Block 6 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
62 blk.6.attn_v.weight Block 6 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
63 blk.6.ffn_down.weight Block 6 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
64 blk.6.ffn_gate.weight Block 6 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
65 blk.6.ffn_norm.weight Block 6 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
66 blk.6.ffn_up.weight Block 6 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.6: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 7 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
67 blk.7.attn_k.weight Block 7 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
68 blk.7.attn_norm.weight Block 7 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
69 blk.7.attn_output.weight Block 7 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
70 blk.7.attn_q.weight Block 7 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
71 blk.7.attn_v.weight Block 7 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
72 blk.7.ffn_down.weight Block 7 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
73 blk.7.ffn_gate.weight Block 7 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
74 blk.7.ffn_norm.weight Block 7 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
75 blk.7.ffn_up.weight Block 7 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.7: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 8 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
76 blk.8.attn_k.weight Block 8 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
77 blk.8.attn_norm.weight Block 8 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
78 blk.8.attn_output.weight Block 8 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
79 blk.8.attn_q.weight Block 8 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
80 blk.8.attn_v.weight Block 8 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
81 blk.8.ffn_down.weight Block 8 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
82 blk.8.ffn_gate.weight Block 8 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
83 blk.8.ffn_norm.weight Block 8 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
84 blk.8.ffn_up.weight Block 8 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.8: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 9 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
85 blk.9.attn_k.weight Block 9 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
86 blk.9.attn_norm.weight Block 9 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
87 blk.9.attn_output.weight Block 9 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
88 blk.9.attn_q.weight Block 9 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
89 blk.9.attn_v.weight Block 9 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
90 blk.9.ffn_down.weight Block 9 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
91 blk.9.ffn_gate.weight Block 9 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
92 blk.9.ffn_norm.weight Block 9 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
93 blk.9.ffn_up.weight Block 9 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.9: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 10 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
94 blk.10.attn_k.weight Block 10 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
95 blk.10.attn_norm.weight Block 10 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
96 blk.10.attn_output.weight Block 10 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
97 blk.10.attn_q.weight Block 10 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
98 blk.10.attn_v.weight Block 10 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
99 blk.10.ffn_down.weight Block 10 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
100 blk.10.ffn_gate.weight Block 10 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
101 blk.10.ffn_norm.weight Block 10 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
102 blk.10.ffn_up.weight Block 10 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.10: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 11 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
103 blk.11.attn_k.weight Block 11 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
104 blk.11.attn_norm.weight Block 11 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
105 blk.11.attn_output.weight Block 11 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
106 blk.11.attn_q.weight Block 11 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
107 blk.11.attn_v.weight Block 11 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
108 blk.11.ffn_down.weight Block 11 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
109 blk.11.ffn_gate.weight Block 11 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
110 blk.11.ffn_norm.weight Block 11 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
111 blk.11.ffn_up.weight Block 11 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.11: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 12 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
112 blk.12.attn_k.weight Block 12 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
113 blk.12.attn_norm.weight Block 12 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
114 blk.12.attn_output.weight Block 12 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
115 blk.12.attn_q.weight Block 12 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
116 blk.12.attn_v.weight Block 12 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
117 blk.12.ffn_down.weight Block 12 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
118 blk.12.ffn_gate.weight Block 12 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
119 blk.12.ffn_norm.weight Block 12 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
120 blk.12.ffn_up.weight Block 12 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.12: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 13 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
121 blk.13.attn_k.weight Block 13 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
122 blk.13.attn_norm.weight Block 13 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
123 blk.13.attn_output.weight Block 13 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
124 blk.13.attn_q.weight Block 13 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
125 blk.13.attn_v.weight Block 13 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
126 blk.13.ffn_down.weight Block 13 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
127 blk.13.ffn_gate.weight Block 13 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
128 blk.13.ffn_norm.weight Block 13 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
129 blk.13.ffn_up.weight Block 13 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.13: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 14 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
130 blk.14.attn_k.weight Block 14 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
131 blk.14.attn_norm.weight Block 14 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
132 blk.14.attn_output.weight Block 14 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
133 blk.14.attn_q.weight Block 14 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
134 blk.14.attn_v.weight Block 14 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
135 blk.14.ffn_down.weight Block 14 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
136 blk.14.ffn_gate.weight Block 14 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
137 blk.14.ffn_norm.weight Block 14 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
138 blk.14.ffn_up.weight Block 14 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.14: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 15 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
139 blk.15.attn_k.weight Block 15 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
140 blk.15.attn_norm.weight Block 15 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
141 blk.15.attn_output.weight Block 15 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
142 blk.15.attn_q.weight Block 15 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
143 blk.15.attn_v.weight Block 15 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q8_0
144 blk.15.ffn_down.weight Block 15 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
145 blk.15.ffn_gate.weight Block 15 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
146 blk.15.ffn_norm.weight Block 15 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
147 blk.15.ffn_up.weight Block 15 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q6_K
  • Total elements in blk.15: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 16 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
148 blk.16.attn_k.weight Block 16 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
149 blk.16.attn_norm.weight Block 16 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
150 blk.16.attn_output.weight Block 16 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
151 blk.16.attn_q.weight Block 16 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
152 blk.16.attn_v.weight Block 16 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
153 blk.16.ffn_down.weight Block 16 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
154 blk.16.ffn_gate.weight Block 16 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
155 blk.16.ffn_norm.weight Block 16 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
156 blk.16.ffn_up.weight Block 16 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.16: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 17 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
157 blk.17.attn_k.weight Block 17 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
158 blk.17.attn_norm.weight Block 17 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
159 blk.17.attn_output.weight Block 17 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
160 blk.17.attn_q.weight Block 17 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
161 blk.17.attn_v.weight Block 17 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
162 blk.17.ffn_down.weight Block 17 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
163 blk.17.ffn_gate.weight Block 17 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
164 blk.17.ffn_norm.weight Block 17 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
165 blk.17.ffn_up.weight Block 17 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.17: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 18 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
166 blk.18.attn_k.weight Block 18 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
167 blk.18.attn_norm.weight Block 18 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
168 blk.18.attn_output.weight Block 18 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
169 blk.18.attn_q.weight Block 18 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
170 blk.18.attn_v.weight Block 18 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
171 blk.18.ffn_down.weight Block 18 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
172 blk.18.ffn_gate.weight Block 18 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
173 blk.18.ffn_norm.weight Block 18 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
174 blk.18.ffn_up.weight Block 18 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.18: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 19 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
175 blk.19.attn_k.weight Block 19 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
176 blk.19.attn_norm.weight Block 19 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
177 blk.19.attn_output.weight Block 19 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
178 blk.19.attn_q.weight Block 19 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
179 blk.19.attn_v.weight Block 19 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
180 blk.19.ffn_down.weight Block 19 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
181 blk.19.ffn_gate.weight Block 19 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
182 blk.19.ffn_norm.weight Block 19 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
183 blk.19.ffn_up.weight Block 19 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.19: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 20 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
184 blk.20.attn_k.weight Block 20 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
185 blk.20.attn_norm.weight Block 20 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
186 blk.20.attn_output.weight Block 20 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
187 blk.20.attn_q.weight Block 20 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
188 blk.20.attn_v.weight Block 20 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
189 blk.20.ffn_down.weight Block 20 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
190 blk.20.ffn_gate.weight Block 20 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
191 blk.20.ffn_norm.weight Block 20 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
192 blk.20.ffn_up.weight Block 20 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.20: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 21 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
193 blk.21.attn_k.weight Block 21 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
194 blk.21.attn_norm.weight Block 21 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
195 blk.21.attn_output.weight Block 21 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
196 blk.21.attn_q.weight Block 21 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
197 blk.21.attn_v.weight Block 21 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
198 blk.21.ffn_down.weight Block 21 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
199 blk.21.ffn_gate.weight Block 21 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
200 blk.21.ffn_norm.weight Block 21 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
201 blk.21.ffn_up.weight Block 21 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.21: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 22 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
202 blk.22.attn_k.weight Block 22 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
203 blk.22.attn_norm.weight Block 22 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
204 blk.22.attn_output.weight Block 22 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
205 blk.22.attn_q.weight Block 22 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
206 blk.22.attn_v.weight Block 22 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
207 blk.22.ffn_down.weight Block 22 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
208 blk.22.ffn_gate.weight Block 22 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
209 blk.22.ffn_norm.weight Block 22 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
210 blk.22.ffn_up.weight Block 22 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.22: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 23 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
211 blk.23.attn_k.weight Block 23 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
212 blk.23.attn_norm.weight Block 23 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
213 blk.23.attn_output.weight Block 23 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
214 blk.23.attn_q.weight Block 23 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
215 blk.23.attn_v.weight Block 23 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
216 blk.23.ffn_down.weight Block 23 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
217 blk.23.ffn_gate.weight Block 23 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
218 blk.23.ffn_norm.weight Block 23 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
219 blk.23.ffn_up.weight Block 23 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.23: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 24 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
220 blk.24.attn_k.weight Block 24 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
221 blk.24.attn_norm.weight Block 24 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
222 blk.24.attn_output.weight Block 24 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
223 blk.24.attn_q.weight Block 24 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
224 blk.24.attn_v.weight Block 24 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
225 blk.24.ffn_down.weight Block 24 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
226 blk.24.ffn_gate.weight Block 24 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
227 blk.24.ffn_norm.weight Block 24 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
228 blk.24.ffn_up.weight Block 24 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.24: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 25 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
229 blk.25.attn_k.weight Block 25 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
230 blk.25.attn_norm.weight Block 25 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
231 blk.25.attn_output.weight Block 25 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
232 blk.25.attn_q.weight Block 25 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
233 blk.25.attn_v.weight Block 25 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
234 blk.25.ffn_down.weight Block 25 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
235 blk.25.ffn_gate.weight Block 25 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
236 blk.25.ffn_norm.weight Block 25 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
237 blk.25.ffn_up.weight Block 25 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.25: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 26 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
238 blk.26.attn_k.weight Block 26 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
239 blk.26.attn_norm.weight Block 26 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
240 blk.26.attn_output.weight Block 26 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
241 blk.26.attn_q.weight Block 26 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
242 blk.26.attn_v.weight Block 26 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
243 blk.26.ffn_down.weight Block 26 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
244 blk.26.ffn_gate.weight Block 26 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
245 blk.26.ffn_norm.weight Block 26 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
246 blk.26.ffn_up.weight Block 26 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.26: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 27 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
247 blk.27.attn_k.weight Block 27 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
248 blk.27.attn_norm.weight Block 27 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
249 blk.27.attn_output.weight Block 27 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
250 blk.27.attn_q.weight Block 27 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
251 blk.27.attn_v.weight Block 27 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
252 blk.27.ffn_down.weight Block 27 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
253 blk.27.ffn_gate.weight Block 27 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
254 blk.27.ffn_norm.weight Block 27 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
255 blk.27.ffn_up.weight Block 27 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.27: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 28 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
256 blk.28.attn_k.weight Block 28 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
257 blk.28.attn_norm.weight Block 28 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
258 blk.28.attn_output.weight Block 28 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
259 blk.28.attn_q.weight Block 28 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
260 blk.28.attn_v.weight Block 28 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
261 blk.28.ffn_down.weight Block 28 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
262 blk.28.ffn_gate.weight Block 28 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
263 blk.28.ffn_norm.weight Block 28 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
264 blk.28.ffn_up.weight Block 28 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.28: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 29 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
265 blk.29.attn_k.weight Block 29 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
266 blk.29.attn_norm.weight Block 29 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
267 blk.29.attn_output.weight Block 29 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
268 blk.29.attn_q.weight Block 29 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
269 blk.29.attn_v.weight Block 29 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
270 blk.29.ffn_down.weight Block 29 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
271 blk.29.ffn_gate.weight Block 29 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
272 blk.29.ffn_norm.weight Block 29 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
273 blk.29.ffn_up.weight Block 29 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.29: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 30 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
274 blk.30.attn_k.weight Block 30 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
275 blk.30.attn_norm.weight Block 30 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
276 blk.30.attn_output.weight Block 30 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
277 blk.30.attn_q.weight Block 30 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
278 blk.30.attn_v.weight Block 30 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
279 blk.30.ffn_down.weight Block 30 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
280 blk.30.ffn_gate.weight Block 30 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
281 blk.30.ffn_norm.weight Block 30 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
282 blk.30.ffn_up.weight Block 30 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.30: (~218M) 218112000
  • Percentage of total elements: 2.72%

Block 31 Tensor Group : ~218M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
283 blk.31.attn_k.weight Block 31 Attention Key (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q5_K
284 blk.31.attn_norm.weight Block 31 Attention Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
285 blk.31.attn_output.weight Block 31 Attention Output (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q6_K
286 blk.31.attn_q.weight Block 31 Attention Query (W) (~17M) 16777216 4096 x 4096 x 1 x 1 Q5_K
287 blk.31.attn_v.weight Block 31 Attention Value (W) ( ~4M) 4194304 4096 x 1024 x 1 x 1 Q6_K
288 blk.31.ffn_down.weight Block 31 Feed-Forward Network "Down" (W) (~59M) 58720256 14336 x 4096 x 1 x 1 Q8_0
289 blk.31.ffn_gate.weight Block 31 Feed-Forward Network "Gate" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
290 blk.31.ffn_norm.weight Block 31 Feed-Forward Network Normalization (W) ( ~4K) 4096 4096 x 1 x 1 x 1 F32
291 blk.31.ffn_up.weight Block 31 Feed-Forward Network "Up" (W) (~59M) 58720256 4096 x 14336 x 1 x 1 Q5_K
  • Total elements in blk.31: (~218M) 218112000
  • Percentage of total elements: 2.72%