Qwen3-30B-A3B-Q4_K_M.gguf - GGUF Internal File Dump
- Endian: LITTLE endian
Key Value Metadata Store
There are 45 key-value pairs in this file
POS | TYPE | Count | Key | Value |
---|---|---|---|---|
1 | UINT32 | 1 | GGUF.version | 3 |
2 | UINT64 | 1 | GGUF.tensor_count | 555 |
3 | UINT64 | 1 | GGUF.kv_count | 42 |
4 | STRING | 1 | general.architecture | qwen3moe |
5 | STRING | 1 | general.type | model |
6 | STRING | 1 | general.name | Qwen3 30B A3B |
7 | STRING | 1 | general.basename | Qwen3 |
8 | STRING | 1 | general.size_label | 30B-A3B |
9 | STRING | 1 | general.license | apache-2.0 |
10 | STRING | 1 | general.license.link | https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE |
11 | UINT32 | 1 | general.base_model.count | 1 |
12 | STRING | 1 | general.base_model.0.name | Qwen3 30B A3B Base |
13 | STRING | 1 | general.base_model.0.organization | Qwen |
14 | STRING | 1 | general.base_model.0.repo_url | https://huggingface.co/Qwen/Qwen3-30B-A3B-Base |
15 | [STRING] | 1 | general.tags | [ text-generation ] |
16 | UINT32 | 1 | qwen3moe.context_length | 40960 |
17 | UINT32 | 1 | qwen3moe.embedding_length | 2048 |
18 | UINT32 | 1 | qwen3moe.feed_forward_length | 6144 |
19 | UINT32 | 1 | qwen3moe.attention.head_count | 32 |
20 | UINT32 | 1 | qwen3moe.attention.head_count_kv | 4 |
21 | FLOAT32 | 1 | qwen3moe.rope.freq_base | 1000000.0 |
22 | FLOAT32 | 1 | qwen3moe.attention.layer_norm_rms_epsilon | 1e-06 |
23 | UINT32 | 1 | qwen3moe.expert_used_count | 8 |
24 | UINT32 | 1 | qwen3moe.attention.key_length | 128 |
25 | UINT32 | 1 | qwen3moe.attention.value_length | 128 |
26 | UINT32 | 1 | qwen3moe.expert_count | 128 |
27 | UINT32 | 1 | qwen3moe.expert_feed_forward_length | 768 |
28 | STRING | 1 | tokenizer.ggml.model | gpt2 |
29 | STRING | 1 | tokenizer.ggml.pre | qwen2 |
30 | [STRING] | 151936 | tokenizer.ggml.tokens | [ ! , " , # , $ , % , ... ] |
31 | [INT32] | 151936 | tokenizer.ggml.token_type | [ 1, 1, 1, 1, 1, 1, 1, ... ] |
32 | [STRING] | 151387 | tokenizer.ggml.merges | [ Ġ Ġ , ĠĠ ĠĠ , i n , Ġ t , ĠĠĠĠ ĠĠĠĠ , ... ] |
33 | UINT32 | 1 | tokenizer.ggml.eos_token_id | 151645 |
34 | UINT32 | 1 | tokenizer.ggml.padding_token_id | 151643 |
35 | UINT32 | 1 | tokenizer.ggml.bos_token_id | 151643 |
36 | BOOL | 1 | tokenizer.ggml.add_bos_token | False |
37 | STRING | 1 | tokenizer.chat_template | `{%- if tools %}{{- '< |
38 | UINT32 | 1 | general.quantization_version | 2 |
39 | UINT32 | 1 | general.file_type | 15 |
40 | BOOL | 1 | general.pruned | True |
41 | UINT32 | 1 | qwen3moe.block_count | 46 |
42 | STRING | 1 | quantize.imatrix.file | ./imatrix/imatrix-Qwen3-30B-A3B-medium.dat |
43 | STRING | 1 | quantize.imatrix.dataset | ../../datasets/imatrix/combined_all_medium.txt |
44 | INT32 | 1 | quantize.imatrix.entries_count | 385 |
45 | INT32 | 1 | quantize.imatrix.chunks_count | 6946 |
Tensors Overview ~29B Elements
Total number of elements in all tensors: 29285881344 Elements
- Qwen3-30B-A3B-Q4_K_M.gguf - GGUF Internal File Dump
- Key Value Metadata Store
- Tensors Overview ~29B Elements
- Tensor Data Offset
- Base Tensor Group : ~622M Elements
- Block 0 Tensor Group : ~623M Elements
- Block 1 Tensor Group : ~623M Elements
- Block 2 Tensor Group : ~623M Elements
- Block 3 Tensor Group : ~623M Elements
- Block 4 Tensor Group : ~623M Elements
- Block 5 Tensor Group : ~623M Elements
- Block 6 Tensor Group : ~623M Elements
- Block 7 Tensor Group : ~623M Elements
- Block 8 Tensor Group : ~623M Elements
- Block 9 Tensor Group : ~623M Elements
- Block 10 Tensor Group : ~623M Elements
- Block 11 Tensor Group : ~623M Elements
- Block 12 Tensor Group : ~623M Elements
- Block 13 Tensor Group : ~623M Elements
- Block 14 Tensor Group : ~623M Elements
- Block 15 Tensor Group : ~623M Elements
- Block 16 Tensor Group : ~623M Elements
- Block 17 Tensor Group : ~623M Elements
- Block 18 Tensor Group : ~623M Elements
- Block 19 Tensor Group : ~623M Elements
- Block 20 Tensor Group : ~623M Elements
- Block 21 Tensor Group : ~623M Elements
- Block 22 Tensor Group : ~623M Elements
- Block 23 Tensor Group : ~623M Elements
- Block 24 Tensor Group : ~623M Elements
- Block 25 Tensor Group : ~623M Elements
- Block 26 Tensor Group : ~623M Elements
- Block 27 Tensor Group : ~623M Elements
- Block 28 Tensor Group : ~623M Elements
- Block 29 Tensor Group : ~623M Elements
- Block 30 Tensor Group : ~623M Elements
- Block 31 Tensor Group : ~623M Elements
- Block 32 Tensor Group : ~623M Elements
- Block 33 Tensor Group : ~623M Elements
- Block 34 Tensor Group : ~623M Elements
- Block 35 Tensor Group : ~623M Elements
- Block 36 Tensor Group : ~623M Elements
- Block 37 Tensor Group : ~623M Elements
- Block 38 Tensor Group : ~623M Elements
- Block 39 Tensor Group : ~623M Elements
- Block 40 Tensor Group : ~623M Elements
- Block 41 Tensor Group : ~623M Elements
- Block 42 Tensor Group : ~623M Elements
- Block 43 Tensor Group : ~623M Elements
- Block 44 Tensor Group : ~623M Elements
- Block 45 Tensor Group : ~623M Elements
Tensor Data Offset
This table contains the offset and data segment relative to start of file
T_ID | Tensor Layer Name | Data Offset (B) | Data Size (B) |
---|---|---|---|
0 | output.weight | 0x5b12e0 | 0xa6ec000 |
1 | output_norm.weight | 0xac9d2e0 | 0x2000 |
2 | token_embd.weight | 0xac9f2e0 | 0x7f82800 |
3 | blk.0.attn_k.weight | 0x12c21ae0 | 0x6e000 |
4 | blk.0.attn_k_norm.weight | 0x12c8fae0 | 0x200 |
5 | blk.0.attn_norm.weight | 0x12c8fce0 | 0x2000 |
6 | blk.0.attn_output.weight | 0x12c91ce0 | 0x480000 |
7 | blk.0.attn_q.weight | 0x13111ce0 | 0x370000 |
8 | blk.0.attn_q_norm.weight | 0x13481ce0 | 0x200 |
9 | blk.0.attn_v.weight | 0x13481ee0 | 0x90000 |
10 | blk.0.ffn_down_exps.weight | 0x13511ee0 | 0x8400000 |
11 | blk.0.ffn_gate_exps.weight | 0x1b911ee0 | 0x5280000 |
12 | blk.0.ffn_gate_inp.weight | 0x20b91ee0 | 0x100000 |
13 | blk.0.ffn_norm.weight | 0x20c91ee0 | 0x2000 |
14 | blk.0.ffn_up_exps.weight | 0x20c93ee0 | 0x5280000 |
15 | blk.1.attn_k.weight | 0x25f13ee0 | 0x6e000 |
16 | blk.1.attn_k_norm.weight | 0x25f81ee0 | 0x200 |
17 | blk.1.attn_norm.weight | 0x25f820e0 | 0x2000 |
18 | blk.1.attn_output.weight | 0x25f840e0 | 0x480000 |
19 | blk.1.attn_q.weight | 0x264040e0 | 0x370000 |
20 | blk.1.attn_q_norm.weight | 0x267740e0 | 0x200 |
21 | blk.1.attn_v.weight | 0x267742e0 | 0x90000 |
22 | blk.1.ffn_down_exps.weight | 0x268042e0 | 0x8400000 |
23 | blk.1.ffn_gate_exps.weight | 0x2ec042e0 | 0x5280000 |
24 | blk.1.ffn_gate_inp.weight | 0x33e842e0 | 0x100000 |
25 | blk.1.ffn_norm.weight | 0x33f842e0 | 0x2000 |
26 | blk.1.ffn_up_exps.weight | 0x33f862e0 | 0x5280000 |
27 | blk.2.attn_k.weight | 0x392062e0 | 0x6e000 |
28 | blk.2.attn_k_norm.weight | 0x392742e0 | 0x200 |
29 | blk.2.attn_norm.weight | 0x392744e0 | 0x2000 |
30 | blk.2.attn_output.weight | 0x392764e0 | 0x480000 |
31 | blk.2.attn_q.weight | 0x396f64e0 | 0x370000 |
32 | blk.2.attn_q_norm.weight | 0x39a664e0 | 0x200 |
33 | blk.2.attn_v.weight | 0x39a666e0 | 0x90000 |
34 | blk.2.ffn_down_exps.weight | 0x39af66e0 | 0x8400000 |
35 | blk.2.ffn_gate_exps.weight | 0x41ef66e0 | 0x5280000 |
36 | blk.2.ffn_gate_inp.weight | 0x471766e0 | 0x100000 |
37 | blk.2.ffn_norm.weight | 0x472766e0 | 0x2000 |
38 | blk.2.ffn_up_exps.weight | 0x472786e0 | 0x5280000 |
39 | blk.3.attn_k.weight | 0x4c4f86e0 | 0x6e000 |
40 | blk.3.attn_k_norm.weight | 0x4c5666e0 | 0x200 |
41 | blk.3.attn_norm.weight | 0x4c5668e0 | 0x2000 |
42 | blk.3.attn_output.weight | 0x4c5688e0 | 0x480000 |
43 | blk.3.attn_q.weight | 0x4c9e88e0 | 0x370000 |
44 | blk.3.attn_q_norm.weight | 0x4cd588e0 | 0x200 |
45 | blk.3.attn_v.weight | 0x4cd58ae0 | 0x90000 |
46 | blk.3.ffn_down_exps.weight | 0x4cde8ae0 | 0x8400000 |
47 | blk.3.ffn_gate_exps.weight | 0x551e8ae0 | 0x5280000 |
48 | blk.3.ffn_gate_inp.weight | 0x5a468ae0 | 0x100000 |
49 | blk.3.ffn_norm.weight | 0x5a568ae0 | 0x2000 |
50 | blk.3.ffn_up_exps.weight | 0x5a56aae0 | 0x5280000 |
51 | blk.4.attn_k.weight | 0x5f7eaae0 | 0x6e000 |
52 | blk.4.attn_k_norm.weight | 0x5f858ae0 | 0x200 |
53 | blk.4.attn_norm.weight | 0x5f858ce0 | 0x2000 |
54 | blk.4.attn_output.weight | 0x5f85ace0 | 0x480000 |
55 | blk.4.attn_q.weight | 0x5fcdace0 | 0x370000 |
56 | blk.4.attn_q_norm.weight | 0x6004ace0 | 0x200 |
57 | blk.4.attn_v.weight | 0x6004aee0 | 0x90000 |
58 | blk.4.ffn_down_exps.weight | 0x600daee0 | 0x8400000 |
59 | blk.4.ffn_gate_exps.weight | 0x684daee0 | 0x5280000 |
60 | blk.4.ffn_gate_inp.weight | 0x6d75aee0 | 0x100000 |
61 | blk.4.ffn_norm.weight | 0x6d85aee0 | 0x2000 |
62 | blk.4.ffn_up_exps.weight | 0x6d85cee0 | 0x5280000 |
63 | blk.5.attn_k.weight | 0x72adcee0 | 0x6e000 |
64 | blk.5.attn_k_norm.weight | 0x72b4aee0 | 0x200 |
65 | blk.5.attn_norm.weight | 0x72b4b0e0 | 0x2000 |
66 | blk.5.attn_output.weight | 0x72b4d0e0 | 0x480000 |
67 | blk.5.attn_q.weight | 0x72fcd0e0 | 0x370000 |
68 | blk.5.attn_q_norm.weight | 0x7333d0e0 | 0x200 |
69 | blk.5.attn_v.weight | 0x7333d2e0 | 0xb0000 |
70 | blk.5.ffn_down_exps.weight | 0x733ed2e0 | 0x8400000 |
71 | blk.5.ffn_gate_exps.weight | 0x7b7ed2e0 | 0x5280000 |
72 | blk.5.ffn_gate_inp.weight | 0x80a6d2e0 | 0x100000 |
73 | blk.5.ffn_norm.weight | 0x80b6d2e0 | 0x2000 |
74 | blk.5.ffn_up_exps.weight | 0x80b6f2e0 | 0x5280000 |
75 | blk.6.attn_k.weight | 0x85def2e0 | 0x6e000 |
76 | blk.6.attn_k_norm.weight | 0x85e5d2e0 | 0x200 |
77 | blk.6.attn_norm.weight | 0x85e5d4e0 | 0x2000 |
78 | blk.6.attn_output.weight | 0x85e5f4e0 | 0x480000 |
79 | blk.6.attn_q.weight | 0x862df4e0 | 0x370000 |
80 | blk.6.attn_q_norm.weight | 0x8664f4e0 | 0x200 |
81 | blk.6.attn_v.weight | 0x8664f6e0 | 0xb0000 |
82 | blk.6.ffn_down_exps.weight | 0x866ff6e0 | 0x8400000 |
83 | blk.6.ffn_gate_exps.weight | 0x8eaff6e0 | 0x5280000 |
84 | blk.6.ffn_gate_inp.weight | 0x93d7f6e0 | 0x100000 |
85 | blk.6.ffn_norm.weight | 0x93e7f6e0 | 0x2000 |
86 | blk.6.ffn_up_exps.weight | 0x93e816e0 | 0x5280000 |
87 | blk.7.attn_k.weight | 0x991016e0 | 0x6e000 |
88 | blk.7.attn_k_norm.weight | 0x9916f6e0 | 0x200 |
89 | blk.7.attn_norm.weight | 0x9916f8e0 | 0x2000 |
90 | blk.7.attn_output.weight | 0x991718e0 | 0x480000 |
91 | blk.7.attn_q.weight | 0x995f18e0 | 0x370000 |
92 | blk.7.attn_q_norm.weight | 0x999618e0 | 0x200 |
93 | blk.7.attn_v.weight | 0x99961ae0 | 0x90000 |
94 | blk.7.ffn_down_exps.weight | 0x999f1ae0 | 0x8400000 |
95 | blk.7.ffn_gate_exps.weight | 0xa1df1ae0 | 0x5280000 |
96 | blk.7.ffn_gate_inp.weight | 0xa7071ae0 | 0x100000 |
97 | blk.7.ffn_norm.weight | 0xa7171ae0 | 0x2000 |
98 | blk.7.ffn_up_exps.weight | 0xa7173ae0 | 0x5280000 |
99 | blk.8.attn_k.weight | 0xac3f3ae0 | 0x6e000 |
100 | blk.8.attn_k_norm.weight | 0xac461ae0 | 0x200 |
101 | blk.8.attn_norm.weight | 0xac461ce0 | 0x2000 |
102 | blk.8.attn_output.weight | 0xac463ce0 | 0x480000 |
103 | blk.8.attn_q.weight | 0xac8e3ce0 | 0x370000 |
104 | blk.8.attn_q_norm.weight | 0xacc53ce0 | 0x200 |
105 | blk.8.attn_v.weight | 0xacc53ee0 | 0xb0000 |
106 | blk.8.ffn_down_exps.weight | 0xacd03ee0 | 0x8400000 |
107 | blk.8.ffn_gate_exps.weight | 0xb5103ee0 | 0x5280000 |
108 | blk.8.ffn_gate_inp.weight | 0xba383ee0 | 0x100000 |
109 | blk.8.ffn_norm.weight | 0xba483ee0 | 0x2000 |
110 | blk.8.ffn_up_exps.weight | 0xba485ee0 | 0x5280000 |
111 | blk.9.attn_k.weight | 0xbf705ee0 | 0x6e000 |
112 | blk.9.attn_k_norm.weight | 0xbf773ee0 | 0x200 |
113 | blk.9.attn_norm.weight | 0xbf7740e0 | 0x2000 |
114 | blk.9.attn_output.weight | 0xbf7760e0 | 0x480000 |
115 | blk.9.attn_q.weight | 0xbfbf60e0 | 0x370000 |
116 | blk.9.attn_q_norm.weight | 0xbff660e0 | 0x200 |
117 | blk.9.attn_v.weight | 0xbff662e0 | 0xb0000 |
118 | blk.9.ffn_down_exps.weight | 0xc00162e0 | 0x8400000 |
119 | blk.9.ffn_gate_exps.weight | 0xc84162e0 | 0x5280000 |
120 | blk.9.ffn_gate_inp.weight | 0xcd6962e0 | 0x100000 |
121 | blk.9.ffn_norm.weight | 0xcd7962e0 | 0x2000 |
122 | blk.9.ffn_up_exps.weight | 0xcd7982e0 | 0x5280000 |
123 | blk.10.attn_k.weight | 0xd2a182e0 | 0x6e000 |
124 | blk.10.attn_k_norm.weight | 0xd2a862e0 | 0x200 |
125 | blk.10.attn_norm.weight | 0xd2a864e0 | 0x2000 |
126 | blk.10.attn_output.weight | 0xd2a884e0 | 0x480000 |
127 | blk.10.attn_q.weight | 0xd2f084e0 | 0x370000 |
128 | blk.10.attn_q_norm.weight | 0xd32784e0 | 0x200 |
129 | blk.10.attn_v.weight | 0xd32786e0 | 0x90000 |
130 | blk.10.ffn_down_exps.weight | 0xd33086e0 | 0x8400000 |
131 | blk.10.ffn_gate_exps.weight | 0xdb7086e0 | 0x5280000 |
132 | blk.10.ffn_gate_inp.weight | 0xe09886e0 | 0x100000 |
133 | blk.10.ffn_norm.weight | 0xe0a886e0 | 0x2000 |
134 | blk.10.ffn_up_exps.weight | 0xe0a8a6e0 | 0x5280000 |
135 | blk.11.attn_k.weight | 0xe5d0a6e0 | 0x6e000 |
136 | blk.11.attn_k_norm.weight | 0xe5d786e0 | 0x200 |
137 | blk.11.attn_norm.weight | 0xe5d788e0 | 0x2000 |
138 | blk.11.attn_output.weight | 0xe5d7a8e0 | 0x480000 |
139 | blk.11.attn_q.weight | 0xe61fa8e0 | 0x370000 |
140 | blk.11.attn_q_norm.weight | 0xe656a8e0 | 0x200 |
141 | blk.11.attn_v.weight | 0xe656aae0 | 0xb0000 |
142 | blk.11.ffn_down_exps.weight | 0xe661aae0 | 0x8400000 |
143 | blk.11.ffn_gate_exps.weight | 0xeea1aae0 | 0x5280000 |
144 | blk.11.ffn_gate_inp.weight | 0xf3c9aae0 | 0x100000 |
145 | blk.11.ffn_norm.weight | 0xf3d9aae0 | 0x2000 |
146 | blk.11.ffn_up_exps.weight | 0xf3d9cae0 | 0x5280000 |
147 | blk.12.attn_k.weight | 0xf901cae0 | 0x6e000 |
148 | blk.12.attn_k_norm.weight | 0xf908aae0 | 0x200 |
149 | blk.12.attn_norm.weight | 0xf908ace0 | 0x2000 |
150 | blk.12.attn_output.weight | 0xf908cce0 | 0x480000 |
151 | blk.12.attn_q.weight | 0xf950cce0 | 0x370000 |
152 | blk.12.attn_q_norm.weight | 0xf987cce0 | 0x200 |
153 | blk.12.attn_v.weight | 0xf987cee0 | 0xb0000 |
154 | blk.12.ffn_down_exps.weight | 0xf992cee0 | 0x8400000 |
155 | blk.12.ffn_gate_exps.weight | 0x101d2cee0 | 0x5280000 |
156 | blk.12.ffn_gate_inp.weight | 0x106facee0 | 0x100000 |
157 | blk.12.ffn_norm.weight | 0x1070acee0 | 0x2000 |
158 | blk.12.ffn_up_exps.weight | 0x1070aeee0 | 0x5280000 |
159 | blk.13.attn_k.weight | 0x10c32eee0 | 0x6e000 |
160 | blk.13.attn_k_norm.weight | 0x10c39cee0 | 0x200 |
161 | blk.13.attn_norm.weight | 0x10c39d0e0 | 0x2000 |
162 | blk.13.attn_output.weight | 0x10c39f0e0 | 0x480000 |
163 | blk.13.attn_q.weight | 0x10c81f0e0 | 0x370000 |
164 | blk.13.attn_q_norm.weight | 0x10cb8f0e0 | 0x200 |
165 | blk.13.attn_v.weight | 0x10cb8f2e0 | 0x90000 |
166 | blk.13.ffn_down_exps.weight | 0x10cc1f2e0 | 0x8400000 |
167 | blk.13.ffn_gate_exps.weight | 0x11501f2e0 | 0x5280000 |
168 | blk.13.ffn_gate_inp.weight | 0x11a29f2e0 | 0x100000 |
169 | blk.13.ffn_norm.weight | 0x11a39f2e0 | 0x2000 |
170 | blk.13.ffn_up_exps.weight | 0x11a3a12e0 | 0x5280000 |
171 | blk.14.attn_k.weight | 0x11f6212e0 | 0x6e000 |
172 | blk.14.attn_k_norm.weight | 0x11f68f2e0 | 0x200 |
173 | blk.14.attn_norm.weight | 0x11f68f4e0 | 0x2000 |
174 | blk.14.attn_output.weight | 0x11f6914e0 | 0x480000 |
175 | blk.14.attn_q.weight | 0x11fb114e0 | 0x370000 |
176 | blk.14.attn_q_norm.weight | 0x11fe814e0 | 0x200 |
177 | blk.14.attn_v.weight | 0x11fe816e0 | 0xb0000 |
178 | blk.14.ffn_down_exps.weight | 0x11ff316e0 | 0x8400000 |
179 | blk.14.ffn_gate_exps.weight | 0x1283316e0 | 0x5280000 |
180 | blk.14.ffn_gate_inp.weight | 0x12d5b16e0 | 0x100000 |
181 | blk.14.ffn_norm.weight | 0x12d6b16e0 | 0x2000 |
182 | blk.14.ffn_up_exps.weight | 0x12d6b36e0 | 0x5280000 |
183 | blk.15.attn_k.weight | 0x1329336e0 | 0x6e000 |
184 | blk.15.attn_k_norm.weight | 0x1329a16e0 | 0x200 |
185 | blk.15.attn_norm.weight | 0x1329a18e0 | 0x2000 |
186 | blk.15.attn_output.weight | 0x1329a38e0 | 0x480000 |
187 | blk.15.attn_q.weight | 0x132e238e0 | 0x370000 |
188 | blk.15.attn_q_norm.weight | 0x1331938e0 | 0x200 |
189 | blk.15.attn_v.weight | 0x133193ae0 | 0xb0000 |
190 | blk.15.ffn_down_exps.weight | 0x133243ae0 | 0x8400000 |
191 | blk.15.ffn_gate_exps.weight | 0x13b643ae0 | 0x5280000 |
192 | blk.15.ffn_gate_inp.weight | 0x1408c3ae0 | 0x100000 |
193 | blk.15.ffn_norm.weight | 0x1409c3ae0 | 0x2000 |
194 | blk.15.ffn_up_exps.weight | 0x1409c5ae0 | 0x5280000 |
195 | blk.16.attn_k.weight | 0x145c45ae0 | 0x6e000 |
196 | blk.16.attn_k_norm.weight | 0x145cb3ae0 | 0x200 |
197 | blk.16.attn_norm.weight | 0x145cb3ce0 | 0x2000 |
198 | blk.16.attn_output.weight | 0x145cb5ce0 | 0x480000 |
199 | blk.16.attn_q.weight | 0x146135ce0 | 0x370000 |
200 | blk.16.attn_q_norm.weight | 0x1464a5ce0 | 0x200 |
201 | blk.16.attn_v.weight | 0x1464a5ee0 | 0x90000 |
202 | blk.16.ffn_down_exps.weight | 0x146535ee0 | 0x8400000 |
203 | blk.16.ffn_gate_exps.weight | 0x14e935ee0 | 0x5280000 |
204 | blk.16.ffn_gate_inp.weight | 0x153bb5ee0 | 0x100000 |
205 | blk.16.ffn_norm.weight | 0x153cb5ee0 | 0x2000 |
206 | blk.16.ffn_up_exps.weight | 0x153cb7ee0 | 0x5280000 |
207 | blk.17.attn_k.weight | 0x158f37ee0 | 0x6e000 |
208 | blk.17.attn_k_norm.weight | 0x158fa5ee0 | 0x200 |
209 | blk.17.attn_norm.weight | 0x158fa60e0 | 0x2000 |
210 | blk.17.attn_output.weight | 0x158fa80e0 | 0x480000 |
211 | blk.17.attn_q.weight | 0x1594280e0 | 0x370000 |
212 | blk.17.attn_q_norm.weight | 0x1597980e0 | 0x200 |
213 | blk.17.attn_v.weight | 0x1597982e0 | 0xb0000 |
214 | blk.17.ffn_down_exps.weight | 0x1598482e0 | 0x8400000 |
215 | blk.17.ffn_gate_exps.weight | 0x161c482e0 | 0x5280000 |
216 | blk.17.ffn_gate_inp.weight | 0x166ec82e0 | 0x100000 |
217 | blk.17.ffn_norm.weight | 0x166fc82e0 | 0x2000 |
218 | blk.17.ffn_up_exps.weight | 0x166fca2e0 | 0x5280000 |
219 | blk.18.attn_k.weight | 0x16c24a2e0 | 0x6e000 |
220 | blk.18.attn_k_norm.weight | 0x16c2b82e0 | 0x200 |
221 | blk.18.attn_norm.weight | 0x16c2b84e0 | 0x2000 |
222 | blk.18.attn_output.weight | 0x16c2ba4e0 | 0x480000 |
223 | blk.18.attn_q.weight | 0x16c73a4e0 | 0x370000 |
224 | blk.18.attn_q_norm.weight | 0x16caaa4e0 | 0x200 |
225 | blk.18.attn_v.weight | 0x16caaa6e0 | 0xb0000 |
226 | blk.18.ffn_down_exps.weight | 0x16cb5a6e0 | 0x8400000 |
227 | blk.18.ffn_gate_exps.weight | 0x174f5a6e0 | 0x6c00000 |
228 | blk.18.ffn_gate_inp.weight | 0x17bb5a6e0 | 0x100000 |
229 | blk.18.ffn_norm.weight | 0x17bc5a6e0 | 0x2000 |
230 | blk.18.ffn_up_exps.weight | 0x17bc5c6e0 | 0x6c00000 |
231 | blk.19.attn_k.weight | 0x18285c6e0 | 0x6e000 |
232 | blk.19.attn_k_norm.weight | 0x1828ca6e0 | 0x200 |
233 | blk.19.attn_norm.weight | 0x1828ca8e0 | 0x2000 |
234 | blk.19.attn_output.weight | 0x1828cc8e0 | 0x480000 |
235 | blk.19.attn_q.weight | 0x182d4c8e0 | 0x370000 |
236 | blk.19.attn_q_norm.weight | 0x1830bc8e0 | 0x200 |
237 | blk.19.attn_v.weight | 0x1830bcae0 | 0x90000 |
238 | blk.19.ffn_down_exps.weight | 0x18314cae0 | 0x8400000 |
239 | blk.19.ffn_gate_exps.weight | 0x18b54cae0 | 0x5280000 |
240 | blk.19.ffn_gate_inp.weight | 0x1907ccae0 | 0x100000 |
241 | blk.19.ffn_norm.weight | 0x1908ccae0 | 0x2000 |
242 | blk.19.ffn_up_exps.weight | 0x1908ceae0 | 0x5280000 |
243 | blk.20.attn_k.weight | 0x195b4eae0 | 0x6e000 |
244 | blk.20.attn_k_norm.weight | 0x195bbcae0 | 0x200 |
245 | blk.20.attn_norm.weight | 0x195bbcce0 | 0x2000 |
246 | blk.20.attn_output.weight | 0x195bbece0 | 0x480000 |
247 | blk.20.attn_q.weight | 0x19603ece0 | 0x370000 |
248 | blk.20.attn_q_norm.weight | 0x1963aece0 | 0x200 |
249 | blk.20.attn_v.weight | 0x1963aeee0 | 0xb0000 |
250 | blk.20.ffn_down_exps.weight | 0x19645eee0 | 0x8400000 |
251 | blk.20.ffn_gate_exps.weight | 0x19e85eee0 | 0x5280000 |
252 | blk.20.ffn_gate_inp.weight | 0x1a3adeee0 | 0x100000 |
253 | blk.20.ffn_norm.weight | 0x1a3bdeee0 | 0x2000 |
254 | blk.20.ffn_up_exps.weight | 0x1a3be0ee0 | 0x5280000 |
255 | blk.21.attn_k.weight | 0x1a8e60ee0 | 0x6e000 |
256 | blk.21.attn_k_norm.weight | 0x1a8eceee0 | 0x200 |
257 | blk.21.attn_norm.weight | 0x1a8ecf0e0 | 0x2000 |
258 | blk.21.attn_output.weight | 0x1a8ed10e0 | 0x480000 |
259 | blk.21.attn_q.weight | 0x1a93510e0 | 0x370000 |
260 | blk.21.attn_q_norm.weight | 0x1a96c10e0 | 0x200 |
261 | blk.21.attn_v.weight | 0x1a96c12e0 | 0xb0000 |
262 | blk.21.ffn_down_exps.weight | 0x1a97712e0 | 0x8400000 |
263 | blk.21.ffn_gate_exps.weight | 0x1b1b712e0 | 0x5280000 |
264 | blk.21.ffn_gate_inp.weight | 0x1b6df12e0 | 0x100000 |
265 | blk.21.ffn_norm.weight | 0x1b6ef12e0 | 0x2000 |
266 | blk.21.ffn_up_exps.weight | 0x1b6ef32e0 | 0x5280000 |
267 | blk.22.attn_k.weight | 0x1bc1732e0 | 0x6e000 |
268 | blk.22.attn_k_norm.weight | 0x1bc1e12e0 | 0x200 |
269 | blk.22.attn_norm.weight | 0x1bc1e14e0 | 0x2000 |
270 | blk.22.attn_output.weight | 0x1bc1e34e0 | 0x480000 |
271 | blk.22.attn_q.weight | 0x1bc6634e0 | 0x370000 |
272 | blk.22.attn_q_norm.weight | 0x1bc9d34e0 | 0x200 |
273 | blk.22.attn_v.weight | 0x1bc9d36e0 | 0x90000 |
274 | blk.22.ffn_down_exps.weight | 0x1bca636e0 | 0x8400000 |
275 | blk.22.ffn_gate_exps.weight | 0x1c4e636e0 | 0x5280000 |
276 | blk.22.ffn_gate_inp.weight | 0x1ca0e36e0 | 0x100000 |
277 | blk.22.ffn_norm.weight | 0x1ca1e36e0 | 0x2000 |
278 | blk.22.ffn_up_exps.weight | 0x1ca1e56e0 | 0x5280000 |
279 | blk.23.attn_k.weight | 0x1cf4656e0 | 0x6e000 |
280 | blk.23.attn_k_norm.weight | 0x1cf4d36e0 | 0x200 |
281 | blk.23.attn_norm.weight | 0x1cf4d38e0 | 0x2000 |
282 | blk.23.attn_output.weight | 0x1cf4d58e0 | 0x480000 |
283 | blk.23.attn_q.weight | 0x1cf9558e0 | 0x370000 |
284 | blk.23.attn_q_norm.weight | 0x1cfcc58e0 | 0x200 |
285 | blk.23.attn_v.weight | 0x1cfcc5ae0 | 0xb0000 |
286 | blk.23.ffn_down_exps.weight | 0x1cfd75ae0 | 0x8400000 |
287 | blk.23.ffn_gate_exps.weight | 0x1d8175ae0 | 0x5280000 |
288 | blk.23.ffn_gate_inp.weight | 0x1dd3f5ae0 | 0x100000 |
289 | blk.23.ffn_norm.weight | 0x1dd4f5ae0 | 0x2000 |
290 | blk.23.ffn_up_exps.weight | 0x1dd4f7ae0 | 0x5280000 |
291 | blk.24.attn_k.weight | 0x1e2777ae0 | 0x90000 |
292 | blk.24.attn_k_norm.weight | 0x1e2807ae0 | 0x200 |
293 | blk.24.attn_norm.weight | 0x1e2807ce0 | 0x2000 |
294 | blk.24.attn_output.weight | 0x1e2809ce0 | 0x480000 |
295 | blk.24.attn_q.weight | 0x1e2c89ce0 | 0x480000 |
296 | blk.24.attn_q_norm.weight | 0x1e3109ce0 | 0x200 |
297 | blk.24.attn_v.weight | 0x1e3109ee0 | 0xb0000 |
298 | blk.24.ffn_down_exps.weight | 0x1e31b9ee0 | 0x8400000 |
299 | blk.24.ffn_gate_exps.weight | 0x1eb5b9ee0 | 0x5280000 |
300 | blk.24.ffn_gate_inp.weight | 0x1f0839ee0 | 0x100000 |
301 | blk.24.ffn_norm.weight | 0x1f0939ee0 | 0x2000 |
302 | blk.24.ffn_up_exps.weight | 0x1f093bee0 | 0x5280000 |
303 | blk.25.attn_k.weight | 0x1f5bbbee0 | 0x90000 |
304 | blk.25.attn_k_norm.weight | 0x1f5c4bee0 | 0x200 |
305 | blk.25.attn_norm.weight | 0x1f5c4c0e0 | 0x2000 |
306 | blk.25.attn_output.weight | 0x1f5c4e0e0 | 0x480000 |
307 | blk.25.attn_q.weight | 0x1f60ce0e0 | 0x480000 |
308 | blk.25.attn_q_norm.weight | 0x1f654e0e0 | 0x200 |
309 | blk.25.attn_v.weight | 0x1f654e2e0 | 0xb0000 |
310 | blk.25.ffn_down_exps.weight | 0x1f65fe2e0 | 0x8400000 |
311 | blk.25.ffn_gate_exps.weight | 0x1fe9fe2e0 | 0x6c00000 |
312 | blk.25.ffn_gate_inp.weight | 0x2055fe2e0 | 0x100000 |
313 | blk.25.ffn_norm.weight | 0x2056fe2e0 | 0x2000 |
314 | blk.25.ffn_up_exps.weight | 0x2057002e0 | 0x6c00000 |
315 | blk.26.attn_k.weight | 0x20c3002e0 | 0x90000 |
316 | blk.26.attn_k_norm.weight | 0x20c3902e0 | 0x200 |
317 | blk.26.attn_norm.weight | 0x20c3904e0 | 0x2000 |
318 | blk.26.attn_output.weight | 0x20c3924e0 | 0x480000 |
319 | blk.26.attn_q.weight | 0x20c8124e0 | 0x480000 |
320 | blk.26.attn_q_norm.weight | 0x20cc924e0 | 0x200 |
321 | blk.26.attn_v.weight | 0x20cc926e0 | 0xb0000 |
322 | blk.26.ffn_down_exps.weight | 0x20cd426e0 | 0x8400000 |
323 | blk.26.ffn_gate_exps.weight | 0x2151426e0 | 0x6c00000 |
324 | blk.26.ffn_gate_inp.weight | 0x21bd426e0 | 0x100000 |
325 | blk.26.ffn_norm.weight | 0x21be426e0 | 0x2000 |
326 | blk.26.ffn_up_exps.weight | 0x21be446e0 | 0x6c00000 |
327 | blk.27.attn_k.weight | 0x222a446e0 | 0x90000 |
328 | blk.27.attn_k_norm.weight | 0x222ad46e0 | 0x200 |
329 | blk.27.attn_norm.weight | 0x222ad48e0 | 0x2000 |
330 | blk.27.attn_output.weight | 0x222ad68e0 | 0x480000 |
331 | blk.27.attn_q.weight | 0x222f568e0 | 0x480000 |
332 | blk.27.attn_q_norm.weight | 0x2233d68e0 | 0x200 |
333 | blk.27.attn_v.weight | 0x2233d6ae0 | 0xb0000 |
334 | blk.27.ffn_down_exps.weight | 0x223486ae0 | 0x8400000 |
335 | blk.27.ffn_gate_exps.weight | 0x22b886ae0 | 0x6c00000 |
336 | blk.27.ffn_gate_inp.weight | 0x232486ae0 | 0x100000 |
337 | blk.27.ffn_norm.weight | 0x232586ae0 | 0x2000 |
338 | blk.27.ffn_up_exps.weight | 0x232588ae0 | 0x6c00000 |
339 | blk.28.attn_k.weight | 0x239188ae0 | 0x90000 |
340 | blk.28.attn_k_norm.weight | 0x239218ae0 | 0x200 |
341 | blk.28.attn_norm.weight | 0x239218ce0 | 0x2000 |
342 | blk.28.attn_output.weight | 0x23921ace0 | 0x480000 |
343 | blk.28.attn_q.weight | 0x23969ace0 | 0x480000 |
344 | blk.28.attn_q_norm.weight | 0x239b1ace0 | 0x200 |
345 | blk.28.attn_v.weight | 0x239b1aee0 | 0xb0000 |
346 | blk.28.ffn_down_exps.weight | 0x239bcaee0 | 0x8400000 |
347 | blk.28.ffn_gate_exps.weight | 0x241fcaee0 | 0x6c00000 |
348 | blk.28.ffn_gate_inp.weight | 0x248bcaee0 | 0x100000 |
349 | blk.28.ffn_norm.weight | 0x248ccaee0 | 0x2000 |
350 | blk.28.ffn_up_exps.weight | 0x248cccee0 | 0x6c00000 |
351 | blk.29.attn_k.weight | 0x24f8ccee0 | 0x90000 |
352 | blk.29.attn_k_norm.weight | 0x24f95cee0 | 0x200 |
353 | blk.29.attn_norm.weight | 0x24f95d0e0 | 0x2000 |
354 | blk.29.attn_output.weight | 0x24f95f0e0 | 0x480000 |
355 | blk.29.attn_q.weight | 0x24fddf0e0 | 0x480000 |
356 | blk.29.attn_q_norm.weight | 0x25025f0e0 | 0x200 |
357 | blk.29.attn_v.weight | 0x25025f2e0 | 0xb0000 |
358 | blk.29.ffn_down_exps.weight | 0x25030f2e0 | 0x8400000 |
359 | blk.29.ffn_gate_exps.weight | 0x25870f2e0 | 0x6c00000 |
360 | blk.29.ffn_gate_inp.weight | 0x25f30f2e0 | 0x100000 |
361 | blk.29.ffn_norm.weight | 0x25f40f2e0 | 0x2000 |
362 | blk.29.ffn_up_exps.weight | 0x25f4112e0 | 0x6c00000 |
363 | blk.30.attn_k.weight | 0x2660112e0 | 0x90000 |
364 | blk.30.attn_k_norm.weight | 0x2660a12e0 | 0x200 |
365 | blk.30.attn_norm.weight | 0x2660a14e0 | 0x2000 |
366 | blk.30.attn_output.weight | 0x2660a34e0 | 0x480000 |
367 | blk.30.attn_q.weight | 0x2665234e0 | 0x480000 |
368 | blk.30.attn_q_norm.weight | 0x2669a34e0 | 0x200 |
369 | blk.30.attn_v.weight | 0x2669a36e0 | 0xb0000 |
370 | blk.30.ffn_down_exps.weight | 0x266a536e0 | 0x8400000 |
371 | blk.30.ffn_gate_exps.weight | 0x26ee536e0 | 0x6c00000 |
372 | blk.30.ffn_gate_inp.weight | 0x275a536e0 | 0x100000 |
373 | blk.30.ffn_norm.weight | 0x275b536e0 | 0x2000 |
374 | blk.30.ffn_up_exps.weight | 0x275b556e0 | 0x6c00000 |
375 | blk.31.attn_k.weight | 0x27c7556e0 | 0x90000 |
376 | blk.31.attn_k_norm.weight | 0x27c7e56e0 | 0x200 |
377 | blk.31.attn_norm.weight | 0x27c7e58e0 | 0x2000 |
378 | blk.31.attn_output.weight | 0x27c7e78e0 | 0x480000 |
379 | blk.31.attn_q.weight | 0x27cc678e0 | 0x480000 |
380 | blk.31.attn_q_norm.weight | 0x27d0e78e0 | 0x200 |
381 | blk.31.attn_v.weight | 0x27d0e7ae0 | 0xb0000 |
382 | blk.31.ffn_down_exps.weight | 0x27d197ae0 | 0x8400000 |
383 | blk.31.ffn_gate_exps.weight | 0x285597ae0 | 0x6c00000 |
384 | blk.31.ffn_gate_inp.weight | 0x28c197ae0 | 0x100000 |
385 | blk.31.ffn_norm.weight | 0x28c297ae0 | 0x2000 |
386 | blk.31.ffn_up_exps.weight | 0x28c299ae0 | 0x6c00000 |
387 | blk.32.attn_k.weight | 0x292e99ae0 | 0x90000 |
388 | blk.32.attn_k_norm.weight | 0x292f29ae0 | 0x200 |
389 | blk.32.attn_norm.weight | 0x292f29ce0 | 0x2000 |
390 | blk.32.attn_output.weight | 0x292f2bce0 | 0x480000 |
391 | blk.32.attn_q.weight | 0x2933abce0 | 0x480000 |
392 | blk.32.attn_q_norm.weight | 0x29382bce0 | 0x200 |
393 | blk.32.attn_v.weight | 0x29382bee0 | 0xb0000 |
394 | blk.32.ffn_down_exps.weight | 0x2938dbee0 | 0x8400000 |
395 | blk.32.ffn_gate_exps.weight | 0x29bcdbee0 | 0x6c00000 |
396 | blk.32.ffn_gate_inp.weight | 0x2a28dbee0 | 0x100000 |
397 | blk.32.ffn_norm.weight | 0x2a29dbee0 | 0x2000 |
398 | blk.32.ffn_up_exps.weight | 0x2a29ddee0 | 0x6c00000 |
399 | blk.33.attn_k.weight | 0x2a95ddee0 | 0x90000 |
400 | blk.33.attn_k_norm.weight | 0x2a966dee0 | 0x200 |
401 | blk.33.attn_norm.weight | 0x2a966e0e0 | 0x2000 |
402 | blk.33.attn_output.weight | 0x2a96700e0 | 0x480000 |
403 | blk.33.attn_q.weight | 0x2a9af00e0 | 0x480000 |
404 | blk.33.attn_q_norm.weight | 0x2a9f700e0 | 0x200 |
405 | blk.33.attn_v.weight | 0x2a9f702e0 | 0xb0000 |
406 | blk.33.ffn_down_exps.weight | 0x2aa0202e0 | 0x8400000 |
407 | blk.33.ffn_gate_exps.weight | 0x2b24202e0 | 0x6c00000 |
408 | blk.33.ffn_gate_inp.weight | 0x2b90202e0 | 0x100000 |
409 | blk.33.ffn_norm.weight | 0x2b91202e0 | 0x2000 |
410 | blk.33.ffn_up_exps.weight | 0x2b91222e0 | 0x6c00000 |
411 | blk.34.attn_k.weight | 0x2bfd222e0 | 0x90000 |
412 | blk.34.attn_k_norm.weight | 0x2bfdb22e0 | 0x200 |
413 | blk.34.attn_norm.weight | 0x2bfdb24e0 | 0x2000 |
414 | blk.34.attn_output.weight | 0x2bfdb44e0 | 0x480000 |
415 | blk.34.attn_q.weight | 0x2c02344e0 | 0x480000 |
416 | blk.34.attn_q_norm.weight | 0x2c06b44e0 | 0x200 |
417 | blk.34.attn_v.weight | 0x2c06b46e0 | 0xb0000 |
418 | blk.34.ffn_down_exps.weight | 0x2c07646e0 | 0x8400000 |
419 | blk.34.ffn_gate_exps.weight | 0x2c8b646e0 | 0x6c00000 |
420 | blk.34.ffn_gate_inp.weight | 0x2cf7646e0 | 0x100000 |
421 | blk.34.ffn_norm.weight | 0x2cf8646e0 | 0x2000 |
422 | blk.34.ffn_up_exps.weight | 0x2cf8666e0 | 0x6c00000 |
423 | blk.35.attn_k.weight | 0x2d64666e0 | 0x90000 |
424 | blk.35.attn_k_norm.weight | 0x2d64f66e0 | 0x200 |
425 | blk.35.attn_norm.weight | 0x2d64f68e0 | 0x2000 |
426 | blk.35.attn_output.weight | 0x2d64f88e0 | 0x480000 |
427 | blk.35.attn_q.weight | 0x2d69788e0 | 0x480000 |
428 | blk.35.attn_q_norm.weight | 0x2d6df88e0 | 0x200 |
429 | blk.35.attn_v.weight | 0x2d6df8ae0 | 0xb0000 |
430 | blk.35.ffn_down_exps.weight | 0x2d6ea8ae0 | 0x8400000 |
431 | blk.35.ffn_gate_exps.weight | 0x2df2a8ae0 | 0x6c00000 |
432 | blk.35.ffn_gate_inp.weight | 0x2e5ea8ae0 | 0x100000 |
433 | blk.35.ffn_norm.weight | 0x2e5fa8ae0 | 0x2000 |
434 | blk.35.ffn_up_exps.weight | 0x2e5faaae0 | 0x6c00000 |
435 | blk.36.attn_k.weight | 0x2ecbaaae0 | 0x90000 |
436 | blk.36.attn_k_norm.weight | 0x2ecc3aae0 | 0x200 |
437 | blk.36.attn_norm.weight | 0x2ecc3ace0 | 0x2000 |
438 | blk.36.attn_output.weight | 0x2ecc3cce0 | 0x480000 |
439 | blk.36.attn_q.weight | 0x2ed0bcce0 | 0x480000 |
440 | blk.36.attn_q_norm.weight | 0x2ed53cce0 | 0x200 |
441 | blk.36.attn_v.weight | 0x2ed53cee0 | 0xb0000 |
442 | blk.36.ffn_down_exps.weight | 0x2ed5ecee0 | 0x8400000 |
443 | blk.36.ffn_gate_exps.weight | 0x2f59ecee0 | 0x6c00000 |
444 | blk.36.ffn_gate_inp.weight | 0x2fc5ecee0 | 0x100000 |
445 | blk.36.ffn_norm.weight | 0x2fc6ecee0 | 0x2000 |
446 | blk.36.ffn_up_exps.weight | 0x2fc6eeee0 | 0x6c00000 |
447 | blk.37.attn_k.weight | 0x3032eeee0 | 0x90000 |
448 | blk.37.attn_k_norm.weight | 0x30337eee0 | 0x200 |
449 | blk.37.attn_norm.weight | 0x30337f0e0 | 0x2000 |
450 | blk.37.attn_output.weight | 0x3033810e0 | 0x480000 |
451 | blk.37.attn_q.weight | 0x3038010e0 | 0x480000 |
452 | blk.37.attn_q_norm.weight | 0x303c810e0 | 0x200 |
453 | blk.37.attn_v.weight | 0x303c812e0 | 0xb0000 |
454 | blk.37.ffn_down_exps.weight | 0x303d312e0 | 0x8400000 |
455 | blk.37.ffn_gate_exps.weight | 0x30c1312e0 | 0x6c00000 |
456 | blk.37.ffn_gate_inp.weight | 0x312d312e0 | 0x100000 |
457 | blk.37.ffn_norm.weight | 0x312e312e0 | 0x2000 |
458 | blk.37.ffn_up_exps.weight | 0x312e332e0 | 0x6c00000 |
459 | blk.38.attn_k.weight | 0x319a332e0 | 0x90000 |
460 | blk.38.attn_k_norm.weight | 0x319ac32e0 | 0x200 |
461 | blk.38.attn_norm.weight | 0x319ac34e0 | 0x2000 |
462 | blk.38.attn_output.weight | 0x319ac54e0 | 0x480000 |
463 | blk.38.attn_q.weight | 0x319f454e0 | 0x480000 |
464 | blk.38.attn_q_norm.weight | 0x31a3c54e0 | 0x200 |
465 | blk.38.attn_v.weight | 0x31a3c56e0 | 0xb0000 |
466 | blk.38.ffn_down_exps.weight | 0x31a4756e0 | 0x8400000 |
467 | blk.38.ffn_gate_exps.weight | 0x3228756e0 | 0x6c00000 |
468 | blk.38.ffn_gate_inp.weight | 0x3294756e0 | 0x100000 |
469 | blk.38.ffn_norm.weight | 0x3295756e0 | 0x2000 |
470 | blk.38.ffn_up_exps.weight | 0x3295776e0 | 0x6c00000 |
471 | blk.39.attn_k.weight | 0x3301776e0 | 0x90000 |
472 | blk.39.attn_k_norm.weight | 0x3302076e0 | 0x200 |
473 | blk.39.attn_norm.weight | 0x3302078e0 | 0x2000 |
474 | blk.39.attn_output.weight | 0x3302098e0 | 0x480000 |
475 | blk.39.attn_q.weight | 0x3306898e0 | 0x480000 |
476 | blk.39.attn_q_norm.weight | 0x330b098e0 | 0x200 |
477 | blk.39.attn_v.weight | 0x330b09ae0 | 0xb0000 |
478 | blk.39.ffn_down_exps.weight | 0x330bb9ae0 | 0x8400000 |
479 | blk.39.ffn_gate_exps.weight | 0x338fb9ae0 | 0x6c00000 |
480 | blk.39.ffn_gate_inp.weight | 0x33fbb9ae0 | 0x100000 |
481 | blk.39.ffn_norm.weight | 0x33fcb9ae0 | 0x2000 |
482 | blk.39.ffn_up_exps.weight | 0x33fcbbae0 | 0x6c00000 |
483 | blk.40.attn_k.weight | 0x3468bbae0 | 0x90000 |
484 | blk.40.attn_k_norm.weight | 0x34694bae0 | 0x200 |
485 | blk.40.attn_norm.weight | 0x34694bce0 | 0x2000 |
486 | blk.40.attn_output.weight | 0x34694dce0 | 0x480000 |
487 | blk.40.attn_q.weight | 0x346dcdce0 | 0x480000 |
488 | blk.40.attn_q_norm.weight | 0x34724dce0 | 0x200 |
489 | blk.40.attn_v.weight | 0x34724dee0 | 0xb0000 |
490 | blk.40.ffn_down_exps.weight | 0x3472fdee0 | 0x8400000 |
491 | blk.40.ffn_gate_exps.weight | 0x34f6fdee0 | 0x6c00000 |
492 | blk.40.ffn_gate_inp.weight | 0x3562fdee0 | 0x100000 |
493 | blk.40.ffn_norm.weight | 0x3563fdee0 | 0x2000 |
494 | blk.40.ffn_up_exps.weight | 0x3563ffee0 | 0x6c00000 |
495 | blk.41.attn_k.weight | 0x35cfffee0 | 0x90000 |
496 | blk.41.attn_k_norm.weight | 0x35d08fee0 | 0x200 |
497 | blk.41.attn_norm.weight | 0x35d0900e0 | 0x2000 |
498 | blk.41.attn_output.weight | 0x35d0920e0 | 0x480000 |
499 | blk.41.attn_q.weight | 0x35d5120e0 | 0x480000 |
500 | blk.41.attn_q_norm.weight | 0x35d9920e0 | 0x200 |
501 | blk.41.attn_v.weight | 0x35d9922e0 | 0xb0000 |
502 | blk.41.ffn_down_exps.weight | 0x35da422e0 | 0x8400000 |
503 | blk.41.ffn_gate_exps.weight | 0x365e422e0 | 0x6c00000 |
504 | blk.41.ffn_gate_inp.weight | 0x36ca422e0 | 0x100000 |
505 | blk.41.ffn_norm.weight | 0x36cb422e0 | 0x2000 |
506 | blk.41.ffn_up_exps.weight | 0x36cb442e0 | 0x6c00000 |
507 | blk.42.attn_k.weight | 0x3737442e0 | 0x90000 |
508 | blk.42.attn_k_norm.weight | 0x3737d42e0 | 0x200 |
509 | blk.42.attn_norm.weight | 0x3737d44e0 | 0x2000 |
510 | blk.42.attn_output.weight | 0x3737d64e0 | 0x480000 |
511 | blk.42.attn_q.weight | 0x373c564e0 | 0x480000 |
512 | blk.42.attn_q_norm.weight | 0x3740d64e0 | 0x200 |
513 | blk.42.attn_v.weight | 0x3740d66e0 | 0xb0000 |
514 | blk.42.ffn_down_exps.weight | 0x3741866e0 | 0x8400000 |
515 | blk.42.ffn_gate_exps.weight | 0x37c5866e0 | 0x6c00000 |
516 | blk.42.ffn_gate_inp.weight | 0x3831866e0 | 0x100000 |
517 | blk.42.ffn_norm.weight | 0x3832866e0 | 0x2000 |
518 | blk.42.ffn_up_exps.weight | 0x3832886e0 | 0x6c00000 |
519 | blk.43.attn_k.weight | 0x389e886e0 | 0x90000 |
520 | blk.43.attn_k_norm.weight | 0x389f186e0 | 0x200 |
521 | blk.43.attn_norm.weight | 0x389f188e0 | 0x2000 |
522 | blk.43.attn_output.weight | 0x389f1a8e0 | 0x480000 |
523 | blk.43.attn_q.weight | 0x38a39a8e0 | 0x480000 |
524 | blk.43.attn_q_norm.weight | 0x38a81a8e0 | 0x200 |
525 | blk.43.attn_v.weight | 0x38a81aae0 | 0xb0000 |
526 | blk.43.ffn_down_exps.weight | 0x38a8caae0 | 0x8400000 |
527 | blk.43.ffn_gate_exps.weight | 0x392ccaae0 | 0x6c00000 |
528 | blk.43.ffn_gate_inp.weight | 0x3998caae0 | 0x100000 |
529 | blk.43.ffn_norm.weight | 0x3999caae0 | 0x2000 |
530 | blk.43.ffn_up_exps.weight | 0x3999ccae0 | 0x6c00000 |
531 | blk.44.attn_k.weight | 0x3a05ccae0 | 0x90000 |
532 | blk.44.attn_k_norm.weight | 0x3a065cae0 | 0x200 |
533 | blk.44.attn_norm.weight | 0x3a065cce0 | 0x2000 |
534 | blk.44.attn_output.weight | 0x3a065ece0 | 0x480000 |
535 | blk.44.attn_q.weight | 0x3a0adece0 | 0x480000 |
536 | blk.44.attn_q_norm.weight | 0x3a0f5ece0 | 0x200 |
537 | blk.44.attn_v.weight | 0x3a0f5eee0 | 0xb0000 |
538 | blk.44.ffn_down_exps.weight | 0x3a100eee0 | 0x8400000 |
539 | blk.44.ffn_gate_exps.weight | 0x3a940eee0 | 0x6c00000 |
540 | blk.44.ffn_gate_inp.weight | 0x3b000eee0 | 0x100000 |
541 | blk.44.ffn_norm.weight | 0x3b010eee0 | 0x2000 |
542 | blk.44.ffn_up_exps.weight | 0x3b0110ee0 | 0x6c00000 |
543 | blk.45.attn_k.weight | 0x3b6d10ee0 | 0x90000 |
544 | blk.45.attn_k_norm.weight | 0x3b6da0ee0 | 0x200 |
545 | blk.45.attn_norm.weight | 0x3b6da10e0 | 0x2000 |
546 | blk.45.attn_output.weight | 0x3b6da30e0 | 0x480000 |
547 | blk.45.attn_q.weight | 0x3b72230e0 | 0x480000 |
548 | blk.45.attn_q_norm.weight | 0x3b76a30e0 | 0x200 |
549 | blk.45.attn_v.weight | 0x3b76a32e0 | 0xb0000 |
550 | blk.45.ffn_down_exps.weight | 0x3b77532e0 | 0x8400000 |
551 | blk.45.ffn_gate_exps.weight | 0x3bfb532e0 | 0x6c00000 |
552 | blk.45.ffn_gate_inp.weight | 0x3c67532e0 | 0x100000 |
553 | blk.45.ffn_norm.weight | 0x3c68532e0 | 0x2000 |
554 | blk.45.ffn_up_exps.weight | 0x3c68552e0 | 0x6c00000 |
Base Tensor Group : ~622M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
0 | output.weight | Output (W) | (~311M) 311164928 | 2048 x 151936 x 1 x 1 | Q4_K |
1 | output_norm.weight | Output Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
2 | token_embd.weight | Token Embedding (W) | (~311M) 311164928 | 2048 x 151936 x 1 x 1 | Q3_K |
- Total elements in base: (~622M) 622331904
- Percentage of total elements: 2.13%
Block 0 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
3 | blk.0.attn_k.weight | Block 0 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
4 | blk.0.attn_k_norm.weight | Block 0 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
5 | blk.0.attn_norm.weight | Block 0 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
6 | blk.0.attn_output.weight | Block 0 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
7 | blk.0.attn_q.weight | Block 0 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
8 | blk.0.attn_q_norm.weight | Block 0 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
9 | blk.0.attn_v.weight | Block 0 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
10 | blk.0.ffn_down_exps.weight | Block 0 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
11 | blk.0.ffn_gate_exps.weight | Block 0 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
12 | blk.0.ffn_gate_inp.weight | Block 0 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
13 | blk.0.ffn_norm.weight | Block 0 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
14 | blk.0.ffn_up_exps.weight | Block 0 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.0: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 1 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
15 | blk.1.attn_k.weight | Block 1 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
16 | blk.1.attn_k_norm.weight | Block 1 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
17 | blk.1.attn_norm.weight | Block 1 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
18 | blk.1.attn_output.weight | Block 1 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
19 | blk.1.attn_q.weight | Block 1 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
20 | blk.1.attn_q_norm.weight | Block 1 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
21 | blk.1.attn_v.weight | Block 1 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
22 | blk.1.ffn_down_exps.weight | Block 1 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
23 | blk.1.ffn_gate_exps.weight | Block 1 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
24 | blk.1.ffn_gate_inp.weight | Block 1 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
25 | blk.1.ffn_norm.weight | Block 1 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
26 | blk.1.ffn_up_exps.weight | Block 1 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.1: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 2 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
27 | blk.2.attn_k.weight | Block 2 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
28 | blk.2.attn_k_norm.weight | Block 2 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
29 | blk.2.attn_norm.weight | Block 2 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
30 | blk.2.attn_output.weight | Block 2 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
31 | blk.2.attn_q.weight | Block 2 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
32 | blk.2.attn_q_norm.weight | Block 2 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
33 | blk.2.attn_v.weight | Block 2 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
34 | blk.2.ffn_down_exps.weight | Block 2 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
35 | blk.2.ffn_gate_exps.weight | Block 2 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
36 | blk.2.ffn_gate_inp.weight | Block 2 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
37 | blk.2.ffn_norm.weight | Block 2 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
38 | blk.2.ffn_up_exps.weight | Block 2 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.2: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 3 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
39 | blk.3.attn_k.weight | Block 3 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
40 | blk.3.attn_k_norm.weight | Block 3 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
41 | blk.3.attn_norm.weight | Block 3 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
42 | blk.3.attn_output.weight | Block 3 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
43 | blk.3.attn_q.weight | Block 3 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
44 | blk.3.attn_q_norm.weight | Block 3 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
45 | blk.3.attn_v.weight | Block 3 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
46 | blk.3.ffn_down_exps.weight | Block 3 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
47 | blk.3.ffn_gate_exps.weight | Block 3 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
48 | blk.3.ffn_gate_inp.weight | Block 3 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
49 | blk.3.ffn_norm.weight | Block 3 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
50 | blk.3.ffn_up_exps.weight | Block 3 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.3: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 4 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
51 | blk.4.attn_k.weight | Block 4 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
52 | blk.4.attn_k_norm.weight | Block 4 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
53 | blk.4.attn_norm.weight | Block 4 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
54 | blk.4.attn_output.weight | Block 4 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
55 | blk.4.attn_q.weight | Block 4 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
56 | blk.4.attn_q_norm.weight | Block 4 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
57 | blk.4.attn_v.weight | Block 4 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
58 | blk.4.ffn_down_exps.weight | Block 4 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
59 | blk.4.ffn_gate_exps.weight | Block 4 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
60 | blk.4.ffn_gate_inp.weight | Block 4 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
61 | blk.4.ffn_norm.weight | Block 4 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
62 | blk.4.ffn_up_exps.weight | Block 4 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.4: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 5 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
63 | blk.5.attn_k.weight | Block 5 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
64 | blk.5.attn_k_norm.weight | Block 5 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
65 | blk.5.attn_norm.weight | Block 5 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
66 | blk.5.attn_output.weight | Block 5 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
67 | blk.5.attn_q.weight | Block 5 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
68 | blk.5.attn_q_norm.weight | Block 5 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
69 | blk.5.attn_v.weight | Block 5 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
70 | blk.5.ffn_down_exps.weight | Block 5 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
71 | blk.5.ffn_gate_exps.weight | Block 5 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
72 | blk.5.ffn_gate_inp.weight | Block 5 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
73 | blk.5.ffn_norm.weight | Block 5 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
74 | blk.5.ffn_up_exps.weight | Block 5 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.5: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 6 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
75 | blk.6.attn_k.weight | Block 6 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
76 | blk.6.attn_k_norm.weight | Block 6 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
77 | blk.6.attn_norm.weight | Block 6 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
78 | blk.6.attn_output.weight | Block 6 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
79 | blk.6.attn_q.weight | Block 6 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
80 | blk.6.attn_q_norm.weight | Block 6 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
81 | blk.6.attn_v.weight | Block 6 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
82 | blk.6.ffn_down_exps.weight | Block 6 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
83 | blk.6.ffn_gate_exps.weight | Block 6 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
84 | blk.6.ffn_gate_inp.weight | Block 6 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
85 | blk.6.ffn_norm.weight | Block 6 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
86 | blk.6.ffn_up_exps.weight | Block 6 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.6: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 7 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
87 | blk.7.attn_k.weight | Block 7 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
88 | blk.7.attn_k_norm.weight | Block 7 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
89 | blk.7.attn_norm.weight | Block 7 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
90 | blk.7.attn_output.weight | Block 7 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
91 | blk.7.attn_q.weight | Block 7 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
92 | blk.7.attn_q_norm.weight | Block 7 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
93 | blk.7.attn_v.weight | Block 7 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
94 | blk.7.ffn_down_exps.weight | Block 7 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
95 | blk.7.ffn_gate_exps.weight | Block 7 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
96 | blk.7.ffn_gate_inp.weight | Block 7 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
97 | blk.7.ffn_norm.weight | Block 7 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
98 | blk.7.ffn_up_exps.weight | Block 7 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.7: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 8 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
99 | blk.8.attn_k.weight | Block 8 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
100 | blk.8.attn_k_norm.weight | Block 8 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
101 | blk.8.attn_norm.weight | Block 8 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
102 | blk.8.attn_output.weight | Block 8 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
103 | blk.8.attn_q.weight | Block 8 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
104 | blk.8.attn_q_norm.weight | Block 8 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
105 | blk.8.attn_v.weight | Block 8 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
106 | blk.8.ffn_down_exps.weight | Block 8 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
107 | blk.8.ffn_gate_exps.weight | Block 8 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
108 | blk.8.ffn_gate_inp.weight | Block 8 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
109 | blk.8.ffn_norm.weight | Block 8 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
110 | blk.8.ffn_up_exps.weight | Block 8 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.8: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 9 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
111 | blk.9.attn_k.weight | Block 9 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
112 | blk.9.attn_k_norm.weight | Block 9 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
113 | blk.9.attn_norm.weight | Block 9 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
114 | blk.9.attn_output.weight | Block 9 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
115 | blk.9.attn_q.weight | Block 9 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
116 | blk.9.attn_q_norm.weight | Block 9 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
117 | blk.9.attn_v.weight | Block 9 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
118 | blk.9.ffn_down_exps.weight | Block 9 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
119 | blk.9.ffn_gate_exps.weight | Block 9 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
120 | blk.9.ffn_gate_inp.weight | Block 9 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
121 | blk.9.ffn_norm.weight | Block 9 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
122 | blk.9.ffn_up_exps.weight | Block 9 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.9: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 10 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
123 | blk.10.attn_k.weight | Block 10 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
124 | blk.10.attn_k_norm.weight | Block 10 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
125 | blk.10.attn_norm.weight | Block 10 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
126 | blk.10.attn_output.weight | Block 10 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
127 | blk.10.attn_q.weight | Block 10 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
128 | blk.10.attn_q_norm.weight | Block 10 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
129 | blk.10.attn_v.weight | Block 10 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
130 | blk.10.ffn_down_exps.weight | Block 10 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
131 | blk.10.ffn_gate_exps.weight | Block 10 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
132 | blk.10.ffn_gate_inp.weight | Block 10 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
133 | blk.10.ffn_norm.weight | Block 10 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
134 | blk.10.ffn_up_exps.weight | Block 10 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.10: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 11 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
135 | blk.11.attn_k.weight | Block 11 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
136 | blk.11.attn_k_norm.weight | Block 11 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
137 | blk.11.attn_norm.weight | Block 11 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
138 | blk.11.attn_output.weight | Block 11 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
139 | blk.11.attn_q.weight | Block 11 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
140 | blk.11.attn_q_norm.weight | Block 11 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
141 | blk.11.attn_v.weight | Block 11 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
142 | blk.11.ffn_down_exps.weight | Block 11 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
143 | blk.11.ffn_gate_exps.weight | Block 11 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
144 | blk.11.ffn_gate_inp.weight | Block 11 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
145 | blk.11.ffn_norm.weight | Block 11 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
146 | blk.11.ffn_up_exps.weight | Block 11 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.11: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 12 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
147 | blk.12.attn_k.weight | Block 12 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
148 | blk.12.attn_k_norm.weight | Block 12 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
149 | blk.12.attn_norm.weight | Block 12 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
150 | blk.12.attn_output.weight | Block 12 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
151 | blk.12.attn_q.weight | Block 12 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
152 | blk.12.attn_q_norm.weight | Block 12 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
153 | blk.12.attn_v.weight | Block 12 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
154 | blk.12.ffn_down_exps.weight | Block 12 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
155 | blk.12.ffn_gate_exps.weight | Block 12 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
156 | blk.12.ffn_gate_inp.weight | Block 12 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
157 | blk.12.ffn_norm.weight | Block 12 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
158 | blk.12.ffn_up_exps.weight | Block 12 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.12: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 13 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
159 | blk.13.attn_k.weight | Block 13 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
160 | blk.13.attn_k_norm.weight | Block 13 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
161 | blk.13.attn_norm.weight | Block 13 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
162 | blk.13.attn_output.weight | Block 13 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
163 | blk.13.attn_q.weight | Block 13 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
164 | blk.13.attn_q_norm.weight | Block 13 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
165 | blk.13.attn_v.weight | Block 13 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
166 | blk.13.ffn_down_exps.weight | Block 13 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
167 | blk.13.ffn_gate_exps.weight | Block 13 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
168 | blk.13.ffn_gate_inp.weight | Block 13 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
169 | blk.13.ffn_norm.weight | Block 13 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
170 | blk.13.ffn_up_exps.weight | Block 13 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.13: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 14 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
171 | blk.14.attn_k.weight | Block 14 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
172 | blk.14.attn_k_norm.weight | Block 14 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
173 | blk.14.attn_norm.weight | Block 14 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
174 | blk.14.attn_output.weight | Block 14 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
175 | blk.14.attn_q.weight | Block 14 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
176 | blk.14.attn_q_norm.weight | Block 14 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
177 | blk.14.attn_v.weight | Block 14 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
178 | blk.14.ffn_down_exps.weight | Block 14 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
179 | blk.14.ffn_gate_exps.weight | Block 14 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
180 | blk.14.ffn_gate_inp.weight | Block 14 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
181 | blk.14.ffn_norm.weight | Block 14 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
182 | blk.14.ffn_up_exps.weight | Block 14 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.14: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 15 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
183 | blk.15.attn_k.weight | Block 15 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
184 | blk.15.attn_k_norm.weight | Block 15 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
185 | blk.15.attn_norm.weight | Block 15 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
186 | blk.15.attn_output.weight | Block 15 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
187 | blk.15.attn_q.weight | Block 15 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
188 | blk.15.attn_q_norm.weight | Block 15 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
189 | blk.15.attn_v.weight | Block 15 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
190 | blk.15.ffn_down_exps.weight | Block 15 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
191 | blk.15.ffn_gate_exps.weight | Block 15 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
192 | blk.15.ffn_gate_inp.weight | Block 15 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
193 | blk.15.ffn_norm.weight | Block 15 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
194 | blk.15.ffn_up_exps.weight | Block 15 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.15: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 16 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
195 | blk.16.attn_k.weight | Block 16 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
196 | blk.16.attn_k_norm.weight | Block 16 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
197 | blk.16.attn_norm.weight | Block 16 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
198 | blk.16.attn_output.weight | Block 16 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
199 | blk.16.attn_q.weight | Block 16 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
200 | blk.16.attn_q_norm.weight | Block 16 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
201 | blk.16.attn_v.weight | Block 16 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
202 | blk.16.ffn_down_exps.weight | Block 16 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
203 | blk.16.ffn_gate_exps.weight | Block 16 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
204 | blk.16.ffn_gate_inp.weight | Block 16 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
205 | blk.16.ffn_norm.weight | Block 16 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
206 | blk.16.ffn_up_exps.weight | Block 16 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.16: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 17 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
207 | blk.17.attn_k.weight | Block 17 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
208 | blk.17.attn_k_norm.weight | Block 17 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
209 | blk.17.attn_norm.weight | Block 17 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
210 | blk.17.attn_output.weight | Block 17 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
211 | blk.17.attn_q.weight | Block 17 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
212 | blk.17.attn_q_norm.weight | Block 17 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
213 | blk.17.attn_v.weight | Block 17 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
214 | blk.17.ffn_down_exps.weight | Block 17 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
215 | blk.17.ffn_gate_exps.weight | Block 17 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
216 | blk.17.ffn_gate_inp.weight | Block 17 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
217 | blk.17.ffn_norm.weight | Block 17 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
218 | blk.17.ffn_up_exps.weight | Block 17 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.17: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 18 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
219 | blk.18.attn_k.weight | Block 18 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
220 | blk.18.attn_k_norm.weight | Block 18 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
221 | blk.18.attn_norm.weight | Block 18 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
222 | blk.18.attn_output.weight | Block 18 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
223 | blk.18.attn_q.weight | Block 18 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
224 | blk.18.attn_q_norm.weight | Block 18 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
225 | blk.18.attn_v.weight | Block 18 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
226 | blk.18.ffn_down_exps.weight | Block 18 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
227 | blk.18.ffn_gate_exps.weight | Block 18 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
228 | blk.18.ffn_gate_inp.weight | Block 18 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
229 | blk.18.ffn_norm.weight | Block 18 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
230 | blk.18.ffn_up_exps.weight | Block 18 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.18: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 19 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
231 | blk.19.attn_k.weight | Block 19 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
232 | blk.19.attn_k_norm.weight | Block 19 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
233 | blk.19.attn_norm.weight | Block 19 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
234 | blk.19.attn_output.weight | Block 19 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
235 | blk.19.attn_q.weight | Block 19 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
236 | blk.19.attn_q_norm.weight | Block 19 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
237 | blk.19.attn_v.weight | Block 19 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
238 | blk.19.ffn_down_exps.weight | Block 19 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
239 | blk.19.ffn_gate_exps.weight | Block 19 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
240 | blk.19.ffn_gate_inp.weight | Block 19 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
241 | blk.19.ffn_norm.weight | Block 19 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
242 | blk.19.ffn_up_exps.weight | Block 19 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.19: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 20 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
243 | blk.20.attn_k.weight | Block 20 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
244 | blk.20.attn_k_norm.weight | Block 20 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
245 | blk.20.attn_norm.weight | Block 20 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
246 | blk.20.attn_output.weight | Block 20 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
247 | blk.20.attn_q.weight | Block 20 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
248 | blk.20.attn_q_norm.weight | Block 20 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
249 | blk.20.attn_v.weight | Block 20 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
250 | blk.20.ffn_down_exps.weight | Block 20 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
251 | blk.20.ffn_gate_exps.weight | Block 20 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
252 | blk.20.ffn_gate_inp.weight | Block 20 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
253 | blk.20.ffn_norm.weight | Block 20 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
254 | blk.20.ffn_up_exps.weight | Block 20 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.20: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 21 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
255 | blk.21.attn_k.weight | Block 21 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
256 | blk.21.attn_k_norm.weight | Block 21 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
257 | blk.21.attn_norm.weight | Block 21 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
258 | blk.21.attn_output.weight | Block 21 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
259 | blk.21.attn_q.weight | Block 21 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
260 | blk.21.attn_q_norm.weight | Block 21 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
261 | blk.21.attn_v.weight | Block 21 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
262 | blk.21.ffn_down_exps.weight | Block 21 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
263 | blk.21.ffn_gate_exps.weight | Block 21 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
264 | blk.21.ffn_gate_inp.weight | Block 21 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
265 | blk.21.ffn_norm.weight | Block 21 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
266 | blk.21.ffn_up_exps.weight | Block 21 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.21: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 22 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
267 | blk.22.attn_k.weight | Block 22 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
268 | blk.22.attn_k_norm.weight | Block 22 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
269 | blk.22.attn_norm.weight | Block 22 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
270 | blk.22.attn_output.weight | Block 22 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
271 | blk.22.attn_q.weight | Block 22 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
272 | blk.22.attn_q_norm.weight | Block 22 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
273 | blk.22.attn_v.weight | Block 22 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
274 | blk.22.ffn_down_exps.weight | Block 22 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
275 | blk.22.ffn_gate_exps.weight | Block 22 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
276 | blk.22.ffn_gate_inp.weight | Block 22 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
277 | blk.22.ffn_norm.weight | Block 22 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
278 | blk.22.ffn_up_exps.weight | Block 22 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.22: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 23 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
279 | blk.23.attn_k.weight | Block 23 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q3_K |
280 | blk.23.attn_k_norm.weight | Block 23 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
281 | blk.23.attn_norm.weight | Block 23 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
282 | blk.23.attn_output.weight | Block 23 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
283 | blk.23.attn_q.weight | Block 23 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q3_K |
284 | blk.23.attn_q_norm.weight | Block 23 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
285 | blk.23.attn_v.weight | Block 23 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
286 | blk.23.ffn_down_exps.weight | Block 23 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
287 | blk.23.ffn_gate_exps.weight | Block 23 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
288 | blk.23.ffn_gate_inp.weight | Block 23 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
289 | blk.23.ffn_norm.weight | Block 23 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
290 | blk.23.ffn_up_exps.weight | Block 23 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.23: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 24 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
291 | blk.24.attn_k.weight | Block 24 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
292 | blk.24.attn_k_norm.weight | Block 24 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
293 | blk.24.attn_norm.weight | Block 24 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
294 | blk.24.attn_output.weight | Block 24 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
295 | blk.24.attn_q.weight | Block 24 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
296 | blk.24.attn_q_norm.weight | Block 24 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
297 | blk.24.attn_v.weight | Block 24 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
298 | blk.24.ffn_down_exps.weight | Block 24 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
299 | blk.24.ffn_gate_exps.weight | Block 24 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
300 | blk.24.ffn_gate_inp.weight | Block 24 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
301 | blk.24.ffn_norm.weight | Block 24 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
302 | blk.24.ffn_up_exps.weight | Block 24 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q3_K |
- Total elements in blk.24: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 25 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
303 | blk.25.attn_k.weight | Block 25 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
304 | blk.25.attn_k_norm.weight | Block 25 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
305 | blk.25.attn_norm.weight | Block 25 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
306 | blk.25.attn_output.weight | Block 25 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
307 | blk.25.attn_q.weight | Block 25 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
308 | blk.25.attn_q_norm.weight | Block 25 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
309 | blk.25.attn_v.weight | Block 25 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
310 | blk.25.ffn_down_exps.weight | Block 25 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
311 | blk.25.ffn_gate_exps.weight | Block 25 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
312 | blk.25.ffn_gate_inp.weight | Block 25 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
313 | blk.25.ffn_norm.weight | Block 25 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
314 | blk.25.ffn_up_exps.weight | Block 25 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.25: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 26 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
315 | blk.26.attn_k.weight | Block 26 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
316 | blk.26.attn_k_norm.weight | Block 26 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
317 | blk.26.attn_norm.weight | Block 26 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
318 | blk.26.attn_output.weight | Block 26 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
319 | blk.26.attn_q.weight | Block 26 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
320 | blk.26.attn_q_norm.weight | Block 26 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
321 | blk.26.attn_v.weight | Block 26 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
322 | blk.26.ffn_down_exps.weight | Block 26 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
323 | blk.26.ffn_gate_exps.weight | Block 26 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
324 | blk.26.ffn_gate_inp.weight | Block 26 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
325 | blk.26.ffn_norm.weight | Block 26 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
326 | blk.26.ffn_up_exps.weight | Block 26 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.26: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 27 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
327 | blk.27.attn_k.weight | Block 27 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
328 | blk.27.attn_k_norm.weight | Block 27 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
329 | blk.27.attn_norm.weight | Block 27 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
330 | blk.27.attn_output.weight | Block 27 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
331 | blk.27.attn_q.weight | Block 27 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
332 | blk.27.attn_q_norm.weight | Block 27 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
333 | blk.27.attn_v.weight | Block 27 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
334 | blk.27.ffn_down_exps.weight | Block 27 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
335 | blk.27.ffn_gate_exps.weight | Block 27 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
336 | blk.27.ffn_gate_inp.weight | Block 27 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
337 | blk.27.ffn_norm.weight | Block 27 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
338 | blk.27.ffn_up_exps.weight | Block 27 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.27: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 28 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
339 | blk.28.attn_k.weight | Block 28 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
340 | blk.28.attn_k_norm.weight | Block 28 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
341 | blk.28.attn_norm.weight | Block 28 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
342 | blk.28.attn_output.weight | Block 28 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
343 | blk.28.attn_q.weight | Block 28 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
344 | blk.28.attn_q_norm.weight | Block 28 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
345 | blk.28.attn_v.weight | Block 28 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
346 | blk.28.ffn_down_exps.weight | Block 28 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
347 | blk.28.ffn_gate_exps.weight | Block 28 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
348 | blk.28.ffn_gate_inp.weight | Block 28 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
349 | blk.28.ffn_norm.weight | Block 28 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
350 | blk.28.ffn_up_exps.weight | Block 28 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.28: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 29 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
351 | blk.29.attn_k.weight | Block 29 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
352 | blk.29.attn_k_norm.weight | Block 29 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
353 | blk.29.attn_norm.weight | Block 29 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
354 | blk.29.attn_output.weight | Block 29 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
355 | blk.29.attn_q.weight | Block 29 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
356 | blk.29.attn_q_norm.weight | Block 29 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
357 | blk.29.attn_v.weight | Block 29 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
358 | blk.29.ffn_down_exps.weight | Block 29 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
359 | blk.29.ffn_gate_exps.weight | Block 29 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
360 | blk.29.ffn_gate_inp.weight | Block 29 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
361 | blk.29.ffn_norm.weight | Block 29 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
362 | blk.29.ffn_up_exps.weight | Block 29 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.29: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 30 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
363 | blk.30.attn_k.weight | Block 30 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
364 | blk.30.attn_k_norm.weight | Block 30 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
365 | blk.30.attn_norm.weight | Block 30 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
366 | blk.30.attn_output.weight | Block 30 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
367 | blk.30.attn_q.weight | Block 30 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
368 | blk.30.attn_q_norm.weight | Block 30 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
369 | blk.30.attn_v.weight | Block 30 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
370 | blk.30.ffn_down_exps.weight | Block 30 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
371 | blk.30.ffn_gate_exps.weight | Block 30 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
372 | blk.30.ffn_gate_inp.weight | Block 30 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
373 | blk.30.ffn_norm.weight | Block 30 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
374 | blk.30.ffn_up_exps.weight | Block 30 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.30: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 31 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
375 | blk.31.attn_k.weight | Block 31 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
376 | blk.31.attn_k_norm.weight | Block 31 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
377 | blk.31.attn_norm.weight | Block 31 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
378 | blk.31.attn_output.weight | Block 31 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
379 | blk.31.attn_q.weight | Block 31 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
380 | blk.31.attn_q_norm.weight | Block 31 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
381 | blk.31.attn_v.weight | Block 31 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
382 | blk.31.ffn_down_exps.weight | Block 31 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
383 | blk.31.ffn_gate_exps.weight | Block 31 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
384 | blk.31.ffn_gate_inp.weight | Block 31 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
385 | blk.31.ffn_norm.weight | Block 31 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
386 | blk.31.ffn_up_exps.weight | Block 31 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.31: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 32 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
387 | blk.32.attn_k.weight | Block 32 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
388 | blk.32.attn_k_norm.weight | Block 32 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
389 | blk.32.attn_norm.weight | Block 32 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
390 | blk.32.attn_output.weight | Block 32 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
391 | blk.32.attn_q.weight | Block 32 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
392 | blk.32.attn_q_norm.weight | Block 32 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
393 | blk.32.attn_v.weight | Block 32 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
394 | blk.32.ffn_down_exps.weight | Block 32 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
395 | blk.32.ffn_gate_exps.weight | Block 32 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
396 | blk.32.ffn_gate_inp.weight | Block 32 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
397 | blk.32.ffn_norm.weight | Block 32 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
398 | blk.32.ffn_up_exps.weight | Block 32 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.32: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 33 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
399 | blk.33.attn_k.weight | Block 33 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
400 | blk.33.attn_k_norm.weight | Block 33 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
401 | blk.33.attn_norm.weight | Block 33 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
402 | blk.33.attn_output.weight | Block 33 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
403 | blk.33.attn_q.weight | Block 33 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
404 | blk.33.attn_q_norm.weight | Block 33 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
405 | blk.33.attn_v.weight | Block 33 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
406 | blk.33.ffn_down_exps.weight | Block 33 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
407 | blk.33.ffn_gate_exps.weight | Block 33 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
408 | blk.33.ffn_gate_inp.weight | Block 33 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
409 | blk.33.ffn_norm.weight | Block 33 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
410 | blk.33.ffn_up_exps.weight | Block 33 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.33: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 34 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
411 | blk.34.attn_k.weight | Block 34 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
412 | blk.34.attn_k_norm.weight | Block 34 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
413 | blk.34.attn_norm.weight | Block 34 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
414 | blk.34.attn_output.weight | Block 34 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
415 | blk.34.attn_q.weight | Block 34 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
416 | blk.34.attn_q_norm.weight | Block 34 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
417 | blk.34.attn_v.weight | Block 34 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
418 | blk.34.ffn_down_exps.weight | Block 34 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
419 | blk.34.ffn_gate_exps.weight | Block 34 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
420 | blk.34.ffn_gate_inp.weight | Block 34 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
421 | blk.34.ffn_norm.weight | Block 34 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
422 | blk.34.ffn_up_exps.weight | Block 34 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.34: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 35 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
423 | blk.35.attn_k.weight | Block 35 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
424 | blk.35.attn_k_norm.weight | Block 35 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
425 | blk.35.attn_norm.weight | Block 35 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
426 | blk.35.attn_output.weight | Block 35 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
427 | blk.35.attn_q.weight | Block 35 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
428 | blk.35.attn_q_norm.weight | Block 35 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
429 | blk.35.attn_v.weight | Block 35 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
430 | blk.35.ffn_down_exps.weight | Block 35 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
431 | blk.35.ffn_gate_exps.weight | Block 35 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
432 | blk.35.ffn_gate_inp.weight | Block 35 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
433 | blk.35.ffn_norm.weight | Block 35 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
434 | blk.35.ffn_up_exps.weight | Block 35 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.35: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 36 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
435 | blk.36.attn_k.weight | Block 36 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
436 | blk.36.attn_k_norm.weight | Block 36 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
437 | blk.36.attn_norm.weight | Block 36 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
438 | blk.36.attn_output.weight | Block 36 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
439 | blk.36.attn_q.weight | Block 36 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
440 | blk.36.attn_q_norm.weight | Block 36 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
441 | blk.36.attn_v.weight | Block 36 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
442 | blk.36.ffn_down_exps.weight | Block 36 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
443 | blk.36.ffn_gate_exps.weight | Block 36 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
444 | blk.36.ffn_gate_inp.weight | Block 36 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
445 | blk.36.ffn_norm.weight | Block 36 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
446 | blk.36.ffn_up_exps.weight | Block 36 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.36: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 37 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
447 | blk.37.attn_k.weight | Block 37 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
448 | blk.37.attn_k_norm.weight | Block 37 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
449 | blk.37.attn_norm.weight | Block 37 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
450 | blk.37.attn_output.weight | Block 37 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
451 | blk.37.attn_q.weight | Block 37 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
452 | blk.37.attn_q_norm.weight | Block 37 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
453 | blk.37.attn_v.weight | Block 37 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
454 | blk.37.ffn_down_exps.weight | Block 37 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
455 | blk.37.ffn_gate_exps.weight | Block 37 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
456 | blk.37.ffn_gate_inp.weight | Block 37 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
457 | blk.37.ffn_norm.weight | Block 37 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
458 | blk.37.ffn_up_exps.weight | Block 37 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.37: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 38 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
459 | blk.38.attn_k.weight | Block 38 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
460 | blk.38.attn_k_norm.weight | Block 38 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
461 | blk.38.attn_norm.weight | Block 38 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
462 | blk.38.attn_output.weight | Block 38 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
463 | blk.38.attn_q.weight | Block 38 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
464 | blk.38.attn_q_norm.weight | Block 38 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
465 | blk.38.attn_v.weight | Block 38 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
466 | blk.38.ffn_down_exps.weight | Block 38 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
467 | blk.38.ffn_gate_exps.weight | Block 38 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
468 | blk.38.ffn_gate_inp.weight | Block 38 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
469 | blk.38.ffn_norm.weight | Block 38 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
470 | blk.38.ffn_up_exps.weight | Block 38 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.38: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 39 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
471 | blk.39.attn_k.weight | Block 39 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
472 | blk.39.attn_k_norm.weight | Block 39 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
473 | blk.39.attn_norm.weight | Block 39 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
474 | blk.39.attn_output.weight | Block 39 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
475 | blk.39.attn_q.weight | Block 39 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
476 | blk.39.attn_q_norm.weight | Block 39 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
477 | blk.39.attn_v.weight | Block 39 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
478 | blk.39.ffn_down_exps.weight | Block 39 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
479 | blk.39.ffn_gate_exps.weight | Block 39 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
480 | blk.39.ffn_gate_inp.weight | Block 39 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
481 | blk.39.ffn_norm.weight | Block 39 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
482 | blk.39.ffn_up_exps.weight | Block 39 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.39: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 40 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
483 | blk.40.attn_k.weight | Block 40 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
484 | blk.40.attn_k_norm.weight | Block 40 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
485 | blk.40.attn_norm.weight | Block 40 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
486 | blk.40.attn_output.weight | Block 40 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
487 | blk.40.attn_q.weight | Block 40 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
488 | blk.40.attn_q_norm.weight | Block 40 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
489 | blk.40.attn_v.weight | Block 40 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
490 | blk.40.ffn_down_exps.weight | Block 40 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
491 | blk.40.ffn_gate_exps.weight | Block 40 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
492 | blk.40.ffn_gate_inp.weight | Block 40 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
493 | blk.40.ffn_norm.weight | Block 40 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
494 | blk.40.ffn_up_exps.weight | Block 40 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.40: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 41 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
495 | blk.41.attn_k.weight | Block 41 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
496 | blk.41.attn_k_norm.weight | Block 41 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
497 | blk.41.attn_norm.weight | Block 41 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
498 | blk.41.attn_output.weight | Block 41 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
499 | blk.41.attn_q.weight | Block 41 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
500 | blk.41.attn_q_norm.weight | Block 41 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
501 | blk.41.attn_v.weight | Block 41 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
502 | blk.41.ffn_down_exps.weight | Block 41 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
503 | blk.41.ffn_gate_exps.weight | Block 41 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
504 | blk.41.ffn_gate_inp.weight | Block 41 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
505 | blk.41.ffn_norm.weight | Block 41 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
506 | blk.41.ffn_up_exps.weight | Block 41 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.41: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 42 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
507 | blk.42.attn_k.weight | Block 42 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
508 | blk.42.attn_k_norm.weight | Block 42 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
509 | blk.42.attn_norm.weight | Block 42 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
510 | blk.42.attn_output.weight | Block 42 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
511 | blk.42.attn_q.weight | Block 42 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
512 | blk.42.attn_q_norm.weight | Block 42 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
513 | blk.42.attn_v.weight | Block 42 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
514 | blk.42.ffn_down_exps.weight | Block 42 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
515 | blk.42.ffn_gate_exps.weight | Block 42 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
516 | blk.42.ffn_gate_inp.weight | Block 42 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
517 | blk.42.ffn_norm.weight | Block 42 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
518 | blk.42.ffn_up_exps.weight | Block 42 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.42: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 43 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
519 | blk.43.attn_k.weight | Block 43 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
520 | blk.43.attn_k_norm.weight | Block 43 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
521 | blk.43.attn_norm.weight | Block 43 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
522 | blk.43.attn_output.weight | Block 43 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
523 | blk.43.attn_q.weight | Block 43 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
524 | blk.43.attn_q_norm.weight | Block 43 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
525 | blk.43.attn_v.weight | Block 43 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
526 | blk.43.ffn_down_exps.weight | Block 43 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
527 | blk.43.ffn_gate_exps.weight | Block 43 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
528 | blk.43.ffn_gate_inp.weight | Block 43 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
529 | blk.43.ffn_norm.weight | Block 43 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
530 | blk.43.ffn_up_exps.weight | Block 43 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.43: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 44 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
531 | blk.44.attn_k.weight | Block 44 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
532 | blk.44.attn_k_norm.weight | Block 44 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
533 | blk.44.attn_norm.weight | Block 44 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
534 | blk.44.attn_output.weight | Block 44 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
535 | blk.44.attn_q.weight | Block 44 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
536 | blk.44.attn_q_norm.weight | Block 44 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
537 | blk.44.attn_v.weight | Block 44 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
538 | blk.44.ffn_down_exps.weight | Block 44 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
539 | blk.44.ffn_gate_exps.weight | Block 44 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
540 | blk.44.ffn_gate_inp.weight | Block 44 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
541 | blk.44.ffn_norm.weight | Block 44 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
542 | blk.44.ffn_up_exps.weight | Block 44 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.44: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 45 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
543 | blk.45.attn_k.weight | Block 45 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q4_K |
544 | blk.45.attn_k_norm.weight | Block 45 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
545 | blk.45.attn_norm.weight | Block 45 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
546 | blk.45.attn_output.weight | Block 45 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K |
547 | blk.45.attn_q.weight | Block 45 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q4_K |
548 | blk.45.attn_q_norm.weight | Block 45 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
549 | blk.45.attn_v.weight | Block 45 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q5_K |
550 | blk.45.ffn_down_exps.weight | Block 45 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q5_K |
551 | blk.45.ffn_gate_exps.weight | Block 45 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
552 | blk.45.ffn_gate_inp.weight | Block 45 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
553 | blk.45.ffn_norm.weight | Block 45 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
554 | blk.45.ffn_up_exps.weight | Block 45 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q4_K |
- Total elements in blk.45: (~623M) 623120640
- Percentage of total elements: 2.13%