Qwen3-30B-A3B-pruned-GGUF / scores /Qwen3-30B-A3B-pruned-Q8_0.md
eaddario's picture
Add GGUF internal file structure
dc1fc34 verified

Qwen3-30B-A3B-Q8_0.gguf - GGUF Internal File Dump

  • Endian: LITTLE endian

Key Value Metadata Store

There are 45 key-value pairs in this file

POS TYPE Count Key Value
1 UINT32 1 GGUF.version 3
2 UINT64 1 GGUF.tensor_count 555
3 UINT64 1 GGUF.kv_count 42
4 STRING 1 general.architecture qwen3moe
5 STRING 1 general.type model
6 STRING 1 general.name Qwen3 30B A3B
7 STRING 1 general.basename Qwen3
8 STRING 1 general.size_label 30B-A3B
9 STRING 1 general.license apache-2.0
10 STRING 1 general.license.link https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE
11 UINT32 1 general.base_model.count 1
12 STRING 1 general.base_model.0.name Qwen3 30B A3B Base
13 STRING 1 general.base_model.0.organization Qwen
14 STRING 1 general.base_model.0.repo_url https://huggingface.co/Qwen/Qwen3-30B-A3B-Base
15 [STRING] 1 general.tags [ text-generation ]
16 UINT32 1 qwen3moe.context_length 40960
17 UINT32 1 qwen3moe.embedding_length 2048
18 UINT32 1 qwen3moe.feed_forward_length 6144
19 UINT32 1 qwen3moe.attention.head_count 32
20 UINT32 1 qwen3moe.attention.head_count_kv 4
21 FLOAT32 1 qwen3moe.rope.freq_base 1000000.0
22 FLOAT32 1 qwen3moe.attention.layer_norm_rms_epsilon 1e-06
23 UINT32 1 qwen3moe.expert_used_count 8
24 UINT32 1 qwen3moe.attention.key_length 128
25 UINT32 1 qwen3moe.attention.value_length 128
26 UINT32 1 qwen3moe.expert_count 128
27 UINT32 1 qwen3moe.expert_feed_forward_length 768
28 STRING 1 tokenizer.ggml.model gpt2
29 STRING 1 tokenizer.ggml.pre qwen2
30 [STRING] 151936 tokenizer.ggml.tokens [ !, ", #, $, %, ... ]
31 [INT32] 151936 tokenizer.ggml.token_type [ 1, 1, 1, 1, 1, 1, 1, ... ]
32 [STRING] 151387 tokenizer.ggml.merges [ Ġ Ġ, ĠĠ ĠĠ, i n, Ġ t, ĠĠĠĠ ĠĠĠĠ, ... ]
33 UINT32 1 tokenizer.ggml.eos_token_id 151645
34 UINT32 1 tokenizer.ggml.padding_token_id 151643
35 UINT32 1 tokenizer.ggml.bos_token_id 151643
36 BOOL 1 tokenizer.ggml.add_bos_token False
37 STRING 1 tokenizer.chat_template `{%- if tools %}{{- '<
38 UINT32 1 general.quantization_version 2
39 UINT32 1 general.file_type 7
40 BOOL 1 general.pruned True
41 UINT32 1 qwen3moe.block_count 46
42 STRING 1 quantize.imatrix.file ./imatrix/imatrix-Qwen3-30B-A3B-medium.dat
43 STRING 1 quantize.imatrix.dataset ../../datasets/imatrix/combined_all_medium.txt
44 INT32 1 quantize.imatrix.entries_count 385
45 INT32 1 quantize.imatrix.chunks_count 6946

Tensors Overview ~29B Elements

Total number of elements in all tensors: 29285881344 Elements

Tensor Data Offset

This table contains the offset and data segment relative to start of file

T_ID Tensor Layer Name Data Offset (B) Data Size (B)
0 output.weight 0x5b12e0 0x13b4c000
1 output_norm.weight 0x140fd2e0 0x2000
2 token_embd.weight 0x140ff2e0 0x7f82800
3 blk.0.attn_k.weight 0x1c081ae0 0xd2000
4 blk.0.attn_k_norm.weight 0x1c153ae0 0x200
5 blk.0.attn_norm.weight 0x1c153ce0 0x2000
6 blk.0.attn_output.weight 0x1c155ce0 0x880000
7 blk.0.attn_q.weight 0x1c9d5ce0 0x690000
8 blk.0.attn_q_norm.weight 0x1d065ce0 0x200
9 blk.0.attn_v.weight 0x1d065ee0 0x200000
10 blk.0.ffn_down_exps.weight 0x1d265ee0 0xcc00000
11 blk.0.ffn_gate_exps.weight 0x29e65ee0 0x9d80000
12 blk.0.ffn_gate_inp.weight 0x33be5ee0 0x100000
13 blk.0.ffn_norm.weight 0x33ce5ee0 0x2000
14 blk.0.ffn_up_exps.weight 0x33ce7ee0 0x9d80000
15 blk.1.attn_k.weight 0x3da67ee0 0xd2000
16 blk.1.attn_k_norm.weight 0x3db39ee0 0x200
17 blk.1.attn_norm.weight 0x3db3a0e0 0x2000
18 blk.1.attn_output.weight 0x3db3c0e0 0x880000
19 blk.1.attn_q.weight 0x3e3bc0e0 0x690000
20 blk.1.attn_q_norm.weight 0x3ea4c0e0 0x200
21 blk.1.attn_v.weight 0x3ea4c2e0 0x200000
22 blk.1.ffn_down_exps.weight 0x3ec4c2e0 0xcc00000
23 blk.1.ffn_gate_exps.weight 0x4b84c2e0 0x9d80000
24 blk.1.ffn_gate_inp.weight 0x555cc2e0 0x100000
25 blk.1.ffn_norm.weight 0x556cc2e0 0x2000
26 blk.1.ffn_up_exps.weight 0x556ce2e0 0x9d80000
27 blk.2.attn_k.weight 0x5f44e2e0 0xd2000
28 blk.2.attn_k_norm.weight 0x5f5202e0 0x200
29 blk.2.attn_norm.weight 0x5f5204e0 0x2000
30 blk.2.attn_output.weight 0x5f5224e0 0x880000
31 blk.2.attn_q.weight 0x5fda24e0 0x690000
32 blk.2.attn_q_norm.weight 0x604324e0 0x200
33 blk.2.attn_v.weight 0x604326e0 0x200000
34 blk.2.ffn_down_exps.weight 0x606326e0 0xcc00000
35 blk.2.ffn_gate_exps.weight 0x6d2326e0 0x9d80000
36 blk.2.ffn_gate_inp.weight 0x76fb26e0 0x100000
37 blk.2.ffn_norm.weight 0x770b26e0 0x2000
38 blk.2.ffn_up_exps.weight 0x770b46e0 0x9d80000
39 blk.3.attn_k.weight 0x80e346e0 0xd2000
40 blk.3.attn_k_norm.weight 0x80f066e0 0x200
41 blk.3.attn_norm.weight 0x80f068e0 0x2000
42 blk.3.attn_output.weight 0x80f088e0 0x880000
43 blk.3.attn_q.weight 0x817888e0 0x690000
44 blk.3.attn_q_norm.weight 0x81e188e0 0x200
45 blk.3.attn_v.weight 0x81e18ae0 0x200000
46 blk.3.ffn_down_exps.weight 0x82018ae0 0xcc00000
47 blk.3.ffn_gate_exps.weight 0x8ec18ae0 0x9d80000
48 blk.3.ffn_gate_inp.weight 0x98998ae0 0x100000
49 blk.3.ffn_norm.weight 0x98a98ae0 0x2000
50 blk.3.ffn_up_exps.weight 0x98a9aae0 0x9d80000
51 blk.4.attn_k.weight 0xa281aae0 0xd2000
52 blk.4.attn_k_norm.weight 0xa28ecae0 0x200
53 blk.4.attn_norm.weight 0xa28ecce0 0x2000
54 blk.4.attn_output.weight 0xa28eece0 0x880000
55 blk.4.attn_q.weight 0xa316ece0 0x690000
56 blk.4.attn_q_norm.weight 0xa37fece0 0x200
57 blk.4.attn_v.weight 0xa37feee0 0x200000
58 blk.4.ffn_down_exps.weight 0xa39feee0 0xcc00000
59 blk.4.ffn_gate_exps.weight 0xb05feee0 0x9d80000
60 blk.4.ffn_gate_inp.weight 0xba37eee0 0x100000
61 blk.4.ffn_norm.weight 0xba47eee0 0x2000
62 blk.4.ffn_up_exps.weight 0xba480ee0 0x9d80000
63 blk.5.attn_k.weight 0xc4200ee0 0xd2000
64 blk.5.attn_k_norm.weight 0xc42d2ee0 0x200
65 blk.5.attn_norm.weight 0xc42d30e0 0x2000
66 blk.5.attn_output.weight 0xc42d50e0 0x880000
67 blk.5.attn_q.weight 0xc4b550e0 0x690000
68 blk.5.attn_q_norm.weight 0xc51e50e0 0x200
69 blk.5.attn_v.weight 0xc51e52e0 0x200000
70 blk.5.ffn_down_exps.weight 0xc53e52e0 0xcc00000
71 blk.5.ffn_gate_exps.weight 0xd1fe52e0 0x9d80000
72 blk.5.ffn_gate_inp.weight 0xdbd652e0 0x100000
73 blk.5.ffn_norm.weight 0xdbe652e0 0x2000
74 blk.5.ffn_up_exps.weight 0xdbe672e0 0x9d80000
75 blk.6.attn_k.weight 0xe5be72e0 0xd2000
76 blk.6.attn_k_norm.weight 0xe5cb92e0 0x200
77 blk.6.attn_norm.weight 0xe5cb94e0 0x2000
78 blk.6.attn_output.weight 0xe5cbb4e0 0x880000
79 blk.6.attn_q.weight 0xe653b4e0 0x690000
80 blk.6.attn_q_norm.weight 0xe6bcb4e0 0x200
81 blk.6.attn_v.weight 0xe6bcb6e0 0x200000
82 blk.6.ffn_down_exps.weight 0xe6dcb6e0 0xcc00000
83 blk.6.ffn_gate_exps.weight 0xf39cb6e0 0x9d80000
84 blk.6.ffn_gate_inp.weight 0xfd74b6e0 0x100000
85 blk.6.ffn_norm.weight 0xfd84b6e0 0x2000
86 blk.6.ffn_up_exps.weight 0xfd84d6e0 0x9d80000
87 blk.7.attn_k.weight 0x1075cd6e0 0xd2000
88 blk.7.attn_k_norm.weight 0x10769f6e0 0x200
89 blk.7.attn_norm.weight 0x10769f8e0 0x2000
90 blk.7.attn_output.weight 0x1076a18e0 0x880000
91 blk.7.attn_q.weight 0x107f218e0 0x690000
92 blk.7.attn_q_norm.weight 0x1085b18e0 0x200
93 blk.7.attn_v.weight 0x1085b1ae0 0x200000
94 blk.7.ffn_down_exps.weight 0x1087b1ae0 0xcc00000
95 blk.7.ffn_gate_exps.weight 0x1153b1ae0 0x9d80000
96 blk.7.ffn_gate_inp.weight 0x11f131ae0 0x100000
97 blk.7.ffn_norm.weight 0x11f231ae0 0x2000
98 blk.7.ffn_up_exps.weight 0x11f233ae0 0x9d80000
99 blk.8.attn_k.weight 0x128fb3ae0 0xd2000
100 blk.8.attn_k_norm.weight 0x129085ae0 0x200
101 blk.8.attn_norm.weight 0x129085ce0 0x2000
102 blk.8.attn_output.weight 0x129087ce0 0x880000
103 blk.8.attn_q.weight 0x129907ce0 0x690000
104 blk.8.attn_q_norm.weight 0x129f97ce0 0x200
105 blk.8.attn_v.weight 0x129f97ee0 0x200000
106 blk.8.ffn_down_exps.weight 0x12a197ee0 0xcc00000
107 blk.8.ffn_gate_exps.weight 0x136d97ee0 0x9d80000
108 blk.8.ffn_gate_inp.weight 0x140b17ee0 0x100000
109 blk.8.ffn_norm.weight 0x140c17ee0 0x2000
110 blk.8.ffn_up_exps.weight 0x140c19ee0 0x9d80000
111 blk.9.attn_k.weight 0x14a999ee0 0xd2000
112 blk.9.attn_k_norm.weight 0x14aa6bee0 0x200
113 blk.9.attn_norm.weight 0x14aa6c0e0 0x2000
114 blk.9.attn_output.weight 0x14aa6e0e0 0x880000
115 blk.9.attn_q.weight 0x14b2ee0e0 0x690000
116 blk.9.attn_q_norm.weight 0x14b97e0e0 0x200
117 blk.9.attn_v.weight 0x14b97e2e0 0x200000
118 blk.9.ffn_down_exps.weight 0x14bb7e2e0 0xcc00000
119 blk.9.ffn_gate_exps.weight 0x15877e2e0 0x9d80000
120 blk.9.ffn_gate_inp.weight 0x1624fe2e0 0x100000
121 blk.9.ffn_norm.weight 0x1625fe2e0 0x2000
122 blk.9.ffn_up_exps.weight 0x1626002e0 0x9d80000
123 blk.10.attn_k.weight 0x16c3802e0 0xd2000
124 blk.10.attn_k_norm.weight 0x16c4522e0 0x200
125 blk.10.attn_norm.weight 0x16c4524e0 0x2000
126 blk.10.attn_output.weight 0x16c4544e0 0x880000
127 blk.10.attn_q.weight 0x16ccd44e0 0x690000
128 blk.10.attn_q_norm.weight 0x16d3644e0 0x200
129 blk.10.attn_v.weight 0x16d3646e0 0x200000
130 blk.10.ffn_down_exps.weight 0x16d5646e0 0xcc00000
131 blk.10.ffn_gate_exps.weight 0x17a1646e0 0x9d80000
132 blk.10.ffn_gate_inp.weight 0x183ee46e0 0x100000
133 blk.10.ffn_norm.weight 0x183fe46e0 0x2000
134 blk.10.ffn_up_exps.weight 0x183fe66e0 0x9d80000
135 blk.11.attn_k.weight 0x18dd666e0 0xd2000
136 blk.11.attn_k_norm.weight 0x18de386e0 0x200
137 blk.11.attn_norm.weight 0x18de388e0 0x2000
138 blk.11.attn_output.weight 0x18de3a8e0 0x880000
139 blk.11.attn_q.weight 0x18e6ba8e0 0x690000
140 blk.11.attn_q_norm.weight 0x18ed4a8e0 0x200
141 blk.11.attn_v.weight 0x18ed4aae0 0x200000
142 blk.11.ffn_down_exps.weight 0x18ef4aae0 0xcc00000
143 blk.11.ffn_gate_exps.weight 0x19bb4aae0 0x9d80000
144 blk.11.ffn_gate_inp.weight 0x1a58caae0 0x100000
145 blk.11.ffn_norm.weight 0x1a59caae0 0x2000
146 blk.11.ffn_up_exps.weight 0x1a59ccae0 0x9d80000
147 blk.12.attn_k.weight 0x1af74cae0 0xd2000
148 blk.12.attn_k_norm.weight 0x1af81eae0 0x200
149 blk.12.attn_norm.weight 0x1af81ece0 0x2000
150 blk.12.attn_output.weight 0x1af820ce0 0x880000
151 blk.12.attn_q.weight 0x1b00a0ce0 0x690000
152 blk.12.attn_q_norm.weight 0x1b0730ce0 0x200
153 blk.12.attn_v.weight 0x1b0730ee0 0x200000
154 blk.12.ffn_down_exps.weight 0x1b0930ee0 0xcc00000
155 blk.12.ffn_gate_exps.weight 0x1bd530ee0 0x9d80000
156 blk.12.ffn_gate_inp.weight 0x1c72b0ee0 0x100000
157 blk.12.ffn_norm.weight 0x1c73b0ee0 0x2000
158 blk.12.ffn_up_exps.weight 0x1c73b2ee0 0x9d80000
159 blk.13.attn_k.weight 0x1d1132ee0 0xd2000
160 blk.13.attn_k_norm.weight 0x1d1204ee0 0x200
161 blk.13.attn_norm.weight 0x1d12050e0 0x2000
162 blk.13.attn_output.weight 0x1d12070e0 0x880000
163 blk.13.attn_q.weight 0x1d1a870e0 0x690000
164 blk.13.attn_q_norm.weight 0x1d21170e0 0x200
165 blk.13.attn_v.weight 0x1d21172e0 0x200000
166 blk.13.ffn_down_exps.weight 0x1d23172e0 0xcc00000
167 blk.13.ffn_gate_exps.weight 0x1def172e0 0x9d80000
168 blk.13.ffn_gate_inp.weight 0x1e8c972e0 0x100000
169 blk.13.ffn_norm.weight 0x1e8d972e0 0x2000
170 blk.13.ffn_up_exps.weight 0x1e8d992e0 0x9d80000
171 blk.14.attn_k.weight 0x1f2b192e0 0xd2000
172 blk.14.attn_k_norm.weight 0x1f2beb2e0 0x200
173 blk.14.attn_norm.weight 0x1f2beb4e0 0x2000
174 blk.14.attn_output.weight 0x1f2bed4e0 0x880000
175 blk.14.attn_q.weight 0x1f346d4e0 0x690000
176 blk.14.attn_q_norm.weight 0x1f3afd4e0 0x200
177 blk.14.attn_v.weight 0x1f3afd6e0 0x200000
178 blk.14.ffn_down_exps.weight 0x1f3cfd6e0 0xcc00000
179 blk.14.ffn_gate_exps.weight 0x2008fd6e0 0x9d80000
180 blk.14.ffn_gate_inp.weight 0x20a67d6e0 0x100000
181 blk.14.ffn_norm.weight 0x20a77d6e0 0x2000
182 blk.14.ffn_up_exps.weight 0x20a77f6e0 0x9d80000
183 blk.15.attn_k.weight 0x2144ff6e0 0xd2000
184 blk.15.attn_k_norm.weight 0x2145d16e0 0x200
185 blk.15.attn_norm.weight 0x2145d18e0 0x2000
186 blk.15.attn_output.weight 0x2145d38e0 0x880000
187 blk.15.attn_q.weight 0x214e538e0 0x690000
188 blk.15.attn_q_norm.weight 0x2154e38e0 0x200
189 blk.15.attn_v.weight 0x2154e3ae0 0x200000
190 blk.15.ffn_down_exps.weight 0x2156e3ae0 0xcc00000
191 blk.15.ffn_gate_exps.weight 0x2222e3ae0 0x9d80000
192 blk.15.ffn_gate_inp.weight 0x22c063ae0 0x100000
193 blk.15.ffn_norm.weight 0x22c163ae0 0x2000
194 blk.15.ffn_up_exps.weight 0x22c165ae0 0x9d80000
195 blk.16.attn_k.weight 0x235ee5ae0 0xd2000
196 blk.16.attn_k_norm.weight 0x235fb7ae0 0x200
197 blk.16.attn_norm.weight 0x235fb7ce0 0x2000
198 blk.16.attn_output.weight 0x235fb9ce0 0x880000
199 blk.16.attn_q.weight 0x236839ce0 0x690000
200 blk.16.attn_q_norm.weight 0x236ec9ce0 0x200
201 blk.16.attn_v.weight 0x236ec9ee0 0x200000
202 blk.16.ffn_down_exps.weight 0x2370c9ee0 0xcc00000
203 blk.16.ffn_gate_exps.weight 0x243cc9ee0 0x9d80000
204 blk.16.ffn_gate_inp.weight 0x24da49ee0 0x100000
205 blk.16.ffn_norm.weight 0x24db49ee0 0x2000
206 blk.16.ffn_up_exps.weight 0x24db4bee0 0x9d80000
207 blk.17.attn_k.weight 0x2578cbee0 0xd2000
208 blk.17.attn_k_norm.weight 0x25799dee0 0x200
209 blk.17.attn_norm.weight 0x25799e0e0 0x2000
210 blk.17.attn_output.weight 0x2579a00e0 0x880000
211 blk.17.attn_q.weight 0x2582200e0 0x690000
212 blk.17.attn_q_norm.weight 0x2588b00e0 0x200
213 blk.17.attn_v.weight 0x2588b02e0 0x200000
214 blk.17.ffn_down_exps.weight 0x258ab02e0 0xcc00000
215 blk.17.ffn_gate_exps.weight 0x2656b02e0 0x9d80000
216 blk.17.ffn_gate_inp.weight 0x26f4302e0 0x100000
217 blk.17.ffn_norm.weight 0x26f5302e0 0x2000
218 blk.17.ffn_up_exps.weight 0x26f5322e0 0x9d80000
219 blk.18.attn_k.weight 0x2792b22e0 0xd2000
220 blk.18.attn_k_norm.weight 0x2793842e0 0x200
221 blk.18.attn_norm.weight 0x2793844e0 0x2000
222 blk.18.attn_output.weight 0x2793864e0 0x880000
223 blk.18.attn_q.weight 0x279c064e0 0x690000
224 blk.18.attn_q_norm.weight 0x27a2964e0 0x200
225 blk.18.attn_v.weight 0x27a2966e0 0x200000
226 blk.18.ffn_down_exps.weight 0x27a4966e0 0xcc00000
227 blk.18.ffn_gate_exps.weight 0x2870966e0 0xcc00000
228 blk.18.ffn_gate_inp.weight 0x293c966e0 0x100000
229 blk.18.ffn_norm.weight 0x293d966e0 0x2000
230 blk.18.ffn_up_exps.weight 0x293d986e0 0xcc00000
231 blk.19.attn_k.weight 0x2a09986e0 0xd2000
232 blk.19.attn_k_norm.weight 0x2a0a6a6e0 0x200
233 blk.19.attn_norm.weight 0x2a0a6a8e0 0x2000
234 blk.19.attn_output.weight 0x2a0a6c8e0 0x880000
235 blk.19.attn_q.weight 0x2a12ec8e0 0x690000
236 blk.19.attn_q_norm.weight 0x2a197c8e0 0x200
237 blk.19.attn_v.weight 0x2a197cae0 0x200000
238 blk.19.ffn_down_exps.weight 0x2a1b7cae0 0xcc00000
239 blk.19.ffn_gate_exps.weight 0x2ae77cae0 0x9d80000
240 blk.19.ffn_gate_inp.weight 0x2b84fcae0 0x100000
241 blk.19.ffn_norm.weight 0x2b85fcae0 0x2000
242 blk.19.ffn_up_exps.weight 0x2b85feae0 0x9d80000
243 blk.20.attn_k.weight 0x2c237eae0 0xd2000
244 blk.20.attn_k_norm.weight 0x2c2450ae0 0x200
245 blk.20.attn_norm.weight 0x2c2450ce0 0x2000
246 blk.20.attn_output.weight 0x2c2452ce0 0x880000
247 blk.20.attn_q.weight 0x2c2cd2ce0 0x690000
248 blk.20.attn_q_norm.weight 0x2c3362ce0 0x200
249 blk.20.attn_v.weight 0x2c3362ee0 0x200000
250 blk.20.ffn_down_exps.weight 0x2c3562ee0 0xcc00000
251 blk.20.ffn_gate_exps.weight 0x2d0162ee0 0x9d80000
252 blk.20.ffn_gate_inp.weight 0x2d9ee2ee0 0x100000
253 blk.20.ffn_norm.weight 0x2d9fe2ee0 0x2000
254 blk.20.ffn_up_exps.weight 0x2d9fe4ee0 0x9d80000
255 blk.21.attn_k.weight 0x2e3d64ee0 0xd2000
256 blk.21.attn_k_norm.weight 0x2e3e36ee0 0x200
257 blk.21.attn_norm.weight 0x2e3e370e0 0x2000
258 blk.21.attn_output.weight 0x2e3e390e0 0x880000
259 blk.21.attn_q.weight 0x2e46b90e0 0x690000
260 blk.21.attn_q_norm.weight 0x2e4d490e0 0x200
261 blk.21.attn_v.weight 0x2e4d492e0 0x200000
262 blk.21.ffn_down_exps.weight 0x2e4f492e0 0xcc00000
263 blk.21.ffn_gate_exps.weight 0x2f1b492e0 0x9d80000
264 blk.21.ffn_gate_inp.weight 0x2fb8c92e0 0x100000
265 blk.21.ffn_norm.weight 0x2fb9c92e0 0x2000
266 blk.21.ffn_up_exps.weight 0x2fb9cb2e0 0x9d80000
267 blk.22.attn_k.weight 0x30574b2e0 0xd2000
268 blk.22.attn_k_norm.weight 0x30581d2e0 0x200
269 blk.22.attn_norm.weight 0x30581d4e0 0x2000
270 blk.22.attn_output.weight 0x30581f4e0 0x880000
271 blk.22.attn_q.weight 0x30609f4e0 0x690000
272 blk.22.attn_q_norm.weight 0x30672f4e0 0x200
273 blk.22.attn_v.weight 0x30672f6e0 0x200000
274 blk.22.ffn_down_exps.weight 0x30692f6e0 0xcc00000
275 blk.22.ffn_gate_exps.weight 0x31352f6e0 0x9d80000
276 blk.22.ffn_gate_inp.weight 0x31d2af6e0 0x100000
277 blk.22.ffn_norm.weight 0x31d3af6e0 0x2000
278 blk.22.ffn_up_exps.weight 0x31d3b16e0 0x9d80000
279 blk.23.attn_k.weight 0x3271316e0 0xd2000
280 blk.23.attn_k_norm.weight 0x3272036e0 0x200
281 blk.23.attn_norm.weight 0x3272038e0 0x2000
282 blk.23.attn_output.weight 0x3272058e0 0x880000
283 blk.23.attn_q.weight 0x327a858e0 0x690000
284 blk.23.attn_q_norm.weight 0x3281158e0 0x200
285 blk.23.attn_v.weight 0x328115ae0 0x200000
286 blk.23.ffn_down_exps.weight 0x328315ae0 0xcc00000
287 blk.23.ffn_gate_exps.weight 0x334f15ae0 0x9d80000
288 blk.23.ffn_gate_inp.weight 0x33ec95ae0 0x100000
289 blk.23.ffn_norm.weight 0x33ed95ae0 0x2000
290 blk.23.ffn_up_exps.weight 0x33ed97ae0 0x9d80000
291 blk.24.attn_k.weight 0x348b17ae0 0x110000
292 blk.24.attn_k_norm.weight 0x348c27ae0 0x200
293 blk.24.attn_norm.weight 0x348c27ce0 0x2000
294 blk.24.attn_output.weight 0x348c29ce0 0x880000
295 blk.24.attn_q.weight 0x3494a9ce0 0x880000
296 blk.24.attn_q_norm.weight 0x349d29ce0 0x200
297 blk.24.attn_v.weight 0x349d29ee0 0x200000
298 blk.24.ffn_down_exps.weight 0x349f29ee0 0xcc00000
299 blk.24.ffn_gate_exps.weight 0x356b29ee0 0x9d80000
300 blk.24.ffn_gate_inp.weight 0x3608a9ee0 0x100000
301 blk.24.ffn_norm.weight 0x3609a9ee0 0x2000
302 blk.24.ffn_up_exps.weight 0x3609abee0 0x9d80000
303 blk.25.attn_k.weight 0x36a72bee0 0x110000
304 blk.25.attn_k_norm.weight 0x36a83bee0 0x200
305 blk.25.attn_norm.weight 0x36a83c0e0 0x2000
306 blk.25.attn_output.weight 0x36a83e0e0 0x880000
307 blk.25.attn_q.weight 0x36b0be0e0 0x880000
308 blk.25.attn_q_norm.weight 0x36b93e0e0 0x200
309 blk.25.attn_v.weight 0x36b93e2e0 0x200000
310 blk.25.ffn_down_exps.weight 0x36bb3e2e0 0xcc00000
311 blk.25.ffn_gate_exps.weight 0x37873e2e0 0xcc00000
312 blk.25.ffn_gate_inp.weight 0x38533e2e0 0x100000
313 blk.25.ffn_norm.weight 0x38543e2e0 0x2000
314 blk.25.ffn_up_exps.weight 0x3854402e0 0xcc00000
315 blk.26.attn_k.weight 0x3920402e0 0x110000
316 blk.26.attn_k_norm.weight 0x3921502e0 0x200
317 blk.26.attn_norm.weight 0x3921504e0 0x2000
318 blk.26.attn_output.weight 0x3921524e0 0x880000
319 blk.26.attn_q.weight 0x3929d24e0 0x880000
320 blk.26.attn_q_norm.weight 0x3932524e0 0x200
321 blk.26.attn_v.weight 0x3932526e0 0x200000
322 blk.26.ffn_down_exps.weight 0x3934526e0 0xcc00000
323 blk.26.ffn_gate_exps.weight 0x3a00526e0 0xcc00000
324 blk.26.ffn_gate_inp.weight 0x3acc526e0 0x100000
325 blk.26.ffn_norm.weight 0x3acd526e0 0x2000
326 blk.26.ffn_up_exps.weight 0x3acd546e0 0xcc00000
327 blk.27.attn_k.weight 0x3b99546e0 0x110000
328 blk.27.attn_k_norm.weight 0x3b9a646e0 0x200
329 blk.27.attn_norm.weight 0x3b9a648e0 0x2000
330 blk.27.attn_output.weight 0x3b9a668e0 0x880000
331 blk.27.attn_q.weight 0x3ba2e68e0 0x880000
332 blk.27.attn_q_norm.weight 0x3bab668e0 0x200
333 blk.27.attn_v.weight 0x3bab66ae0 0x200000
334 blk.27.ffn_down_exps.weight 0x3bad66ae0 0xcc00000
335 blk.27.ffn_gate_exps.weight 0x3c7966ae0 0xcc00000
336 blk.27.ffn_gate_inp.weight 0x3d4566ae0 0x100000
337 blk.27.ffn_norm.weight 0x3d4666ae0 0x2000
338 blk.27.ffn_up_exps.weight 0x3d4668ae0 0xcc00000
339 blk.28.attn_k.weight 0x3e1268ae0 0x110000
340 blk.28.attn_k_norm.weight 0x3e1378ae0 0x200
341 blk.28.attn_norm.weight 0x3e1378ce0 0x2000
342 blk.28.attn_output.weight 0x3e137ace0 0x880000
343 blk.28.attn_q.weight 0x3e1bface0 0x880000
344 blk.28.attn_q_norm.weight 0x3e247ace0 0x200
345 blk.28.attn_v.weight 0x3e247aee0 0x200000
346 blk.28.ffn_down_exps.weight 0x3e267aee0 0xcc00000
347 blk.28.ffn_gate_exps.weight 0x3ef27aee0 0xcc00000
348 blk.28.ffn_gate_inp.weight 0x3fbe7aee0 0x100000
349 blk.28.ffn_norm.weight 0x3fbf7aee0 0x2000
350 blk.28.ffn_up_exps.weight 0x3fbf7cee0 0xcc00000
351 blk.29.attn_k.weight 0x408b7cee0 0x110000
352 blk.29.attn_k_norm.weight 0x408c8cee0 0x200
353 blk.29.attn_norm.weight 0x408c8d0e0 0x2000
354 blk.29.attn_output.weight 0x408c8f0e0 0x880000
355 blk.29.attn_q.weight 0x40950f0e0 0x880000
356 blk.29.attn_q_norm.weight 0x409d8f0e0 0x200
357 blk.29.attn_v.weight 0x409d8f2e0 0x200000
358 blk.29.ffn_down_exps.weight 0x409f8f2e0 0xcc00000
359 blk.29.ffn_gate_exps.weight 0x416b8f2e0 0xcc00000
360 blk.29.ffn_gate_inp.weight 0x42378f2e0 0x100000
361 blk.29.ffn_norm.weight 0x42388f2e0 0x2000
362 blk.29.ffn_up_exps.weight 0x4238912e0 0xcc00000
363 blk.30.attn_k.weight 0x4304912e0 0x110000
364 blk.30.attn_k_norm.weight 0x4305a12e0 0x200
365 blk.30.attn_norm.weight 0x4305a14e0 0x2000
366 blk.30.attn_output.weight 0x4305a34e0 0x880000
367 blk.30.attn_q.weight 0x430e234e0 0x880000
368 blk.30.attn_q_norm.weight 0x4316a34e0 0x200
369 blk.30.attn_v.weight 0x4316a36e0 0x200000
370 blk.30.ffn_down_exps.weight 0x4318a36e0 0xcc00000
371 blk.30.ffn_gate_exps.weight 0x43e4a36e0 0xcc00000
372 blk.30.ffn_gate_inp.weight 0x44b0a36e0 0x100000
373 blk.30.ffn_norm.weight 0x44b1a36e0 0x2000
374 blk.30.ffn_up_exps.weight 0x44b1a56e0 0xcc00000
375 blk.31.attn_k.weight 0x457da56e0 0x110000
376 blk.31.attn_k_norm.weight 0x457eb56e0 0x200
377 blk.31.attn_norm.weight 0x457eb58e0 0x2000
378 blk.31.attn_output.weight 0x457eb78e0 0x880000
379 blk.31.attn_q.weight 0x4587378e0 0x880000
380 blk.31.attn_q_norm.weight 0x458fb78e0 0x200
381 blk.31.attn_v.weight 0x458fb7ae0 0x200000
382 blk.31.ffn_down_exps.weight 0x4591b7ae0 0xcc00000
383 blk.31.ffn_gate_exps.weight 0x465db7ae0 0xcc00000
384 blk.31.ffn_gate_inp.weight 0x4729b7ae0 0x100000
385 blk.31.ffn_norm.weight 0x472ab7ae0 0x2000
386 blk.31.ffn_up_exps.weight 0x472ab9ae0 0xcc00000
387 blk.32.attn_k.weight 0x47f6b9ae0 0x110000
388 blk.32.attn_k_norm.weight 0x47f7c9ae0 0x200
389 blk.32.attn_norm.weight 0x47f7c9ce0 0x2000
390 blk.32.attn_output.weight 0x47f7cbce0 0x880000
391 blk.32.attn_q.weight 0x48004bce0 0x880000
392 blk.32.attn_q_norm.weight 0x4808cbce0 0x200
393 blk.32.attn_v.weight 0x4808cbee0 0x200000
394 blk.32.ffn_down_exps.weight 0x480acbee0 0xcc00000
395 blk.32.ffn_gate_exps.weight 0x48d6cbee0 0xcc00000
396 blk.32.ffn_gate_inp.weight 0x49a2cbee0 0x100000
397 blk.32.ffn_norm.weight 0x49a3cbee0 0x2000
398 blk.32.ffn_up_exps.weight 0x49a3cdee0 0xcc00000
399 blk.33.attn_k.weight 0x4a6fcdee0 0x110000
400 blk.33.attn_k_norm.weight 0x4a70ddee0 0x200
401 blk.33.attn_norm.weight 0x4a70de0e0 0x2000
402 blk.33.attn_output.weight 0x4a70e00e0 0x880000
403 blk.33.attn_q.weight 0x4a79600e0 0x880000
404 blk.33.attn_q_norm.weight 0x4a81e00e0 0x200
405 blk.33.attn_v.weight 0x4a81e02e0 0x200000
406 blk.33.ffn_down_exps.weight 0x4a83e02e0 0xcc00000
407 blk.33.ffn_gate_exps.weight 0x4b4fe02e0 0xcc00000
408 blk.33.ffn_gate_inp.weight 0x4c1be02e0 0x100000
409 blk.33.ffn_norm.weight 0x4c1ce02e0 0x2000
410 blk.33.ffn_up_exps.weight 0x4c1ce22e0 0xcc00000
411 blk.34.attn_k.weight 0x4ce8e22e0 0x110000
412 blk.34.attn_k_norm.weight 0x4ce9f22e0 0x200
413 blk.34.attn_norm.weight 0x4ce9f24e0 0x2000
414 blk.34.attn_output.weight 0x4ce9f44e0 0x880000
415 blk.34.attn_q.weight 0x4cf2744e0 0x880000
416 blk.34.attn_q_norm.weight 0x4cfaf44e0 0x200
417 blk.34.attn_v.weight 0x4cfaf46e0 0x200000
418 blk.34.ffn_down_exps.weight 0x4cfcf46e0 0xcc00000
419 blk.34.ffn_gate_exps.weight 0x4dc8f46e0 0xcc00000
420 blk.34.ffn_gate_inp.weight 0x4e94f46e0 0x100000
421 blk.34.ffn_norm.weight 0x4e95f46e0 0x2000
422 blk.34.ffn_up_exps.weight 0x4e95f66e0 0xcc00000
423 blk.35.attn_k.weight 0x4f61f66e0 0x110000
424 blk.35.attn_k_norm.weight 0x4f63066e0 0x200
425 blk.35.attn_norm.weight 0x4f63068e0 0x2000
426 blk.35.attn_output.weight 0x4f63088e0 0x880000
427 blk.35.attn_q.weight 0x4f6b888e0 0x880000
428 blk.35.attn_q_norm.weight 0x4f74088e0 0x200
429 blk.35.attn_v.weight 0x4f7408ae0 0x200000
430 blk.35.ffn_down_exps.weight 0x4f7608ae0 0xcc00000
431 blk.35.ffn_gate_exps.weight 0x504208ae0 0xcc00000
432 blk.35.ffn_gate_inp.weight 0x510e08ae0 0x100000
433 blk.35.ffn_norm.weight 0x510f08ae0 0x2000
434 blk.35.ffn_up_exps.weight 0x510f0aae0 0xcc00000
435 blk.36.attn_k.weight 0x51db0aae0 0x110000
436 blk.36.attn_k_norm.weight 0x51dc1aae0 0x200
437 blk.36.attn_norm.weight 0x51dc1ace0 0x2000
438 blk.36.attn_output.weight 0x51dc1cce0 0x880000
439 blk.36.attn_q.weight 0x51e49cce0 0x880000
440 blk.36.attn_q_norm.weight 0x51ed1cce0 0x200
441 blk.36.attn_v.weight 0x51ed1cee0 0x200000
442 blk.36.ffn_down_exps.weight 0x51ef1cee0 0xcc00000
443 blk.36.ffn_gate_exps.weight 0x52bb1cee0 0xcc00000
444 blk.36.ffn_gate_inp.weight 0x53871cee0 0x100000
445 blk.36.ffn_norm.weight 0x53881cee0 0x2000
446 blk.36.ffn_up_exps.weight 0x53881eee0 0xcc00000
447 blk.37.attn_k.weight 0x54541eee0 0x110000
448 blk.37.attn_k_norm.weight 0x54552eee0 0x200
449 blk.37.attn_norm.weight 0x54552f0e0 0x2000
450 blk.37.attn_output.weight 0x5455310e0 0x880000
451 blk.37.attn_q.weight 0x545db10e0 0x880000
452 blk.37.attn_q_norm.weight 0x5466310e0 0x200
453 blk.37.attn_v.weight 0x5466312e0 0x200000
454 blk.37.ffn_down_exps.weight 0x5468312e0 0xcc00000
455 blk.37.ffn_gate_exps.weight 0x5534312e0 0xcc00000
456 blk.37.ffn_gate_inp.weight 0x5600312e0 0x100000
457 blk.37.ffn_norm.weight 0x5601312e0 0x2000
458 blk.37.ffn_up_exps.weight 0x5601332e0 0xcc00000
459 blk.38.attn_k.weight 0x56cd332e0 0x110000
460 blk.38.attn_k_norm.weight 0x56ce432e0 0x200
461 blk.38.attn_norm.weight 0x56ce434e0 0x2000
462 blk.38.attn_output.weight 0x56ce454e0 0x880000
463 blk.38.attn_q.weight 0x56d6c54e0 0x880000
464 blk.38.attn_q_norm.weight 0x56df454e0 0x200
465 blk.38.attn_v.weight 0x56df456e0 0x200000
466 blk.38.ffn_down_exps.weight 0x56e1456e0 0xcc00000
467 blk.38.ffn_gate_exps.weight 0x57ad456e0 0xcc00000
468 blk.38.ffn_gate_inp.weight 0x5879456e0 0x100000
469 blk.38.ffn_norm.weight 0x587a456e0 0x2000
470 blk.38.ffn_up_exps.weight 0x587a476e0 0xcc00000
471 blk.39.attn_k.weight 0x5946476e0 0x110000
472 blk.39.attn_k_norm.weight 0x5947576e0 0x200
473 blk.39.attn_norm.weight 0x5947578e0 0x2000
474 blk.39.attn_output.weight 0x5947598e0 0x880000
475 blk.39.attn_q.weight 0x594fd98e0 0x880000
476 blk.39.attn_q_norm.weight 0x5958598e0 0x200
477 blk.39.attn_v.weight 0x595859ae0 0x200000
478 blk.39.ffn_down_exps.weight 0x595a59ae0 0xcc00000
479 blk.39.ffn_gate_exps.weight 0x5a2659ae0 0xcc00000
480 blk.39.ffn_gate_inp.weight 0x5af259ae0 0x100000
481 blk.39.ffn_norm.weight 0x5af359ae0 0x2000
482 blk.39.ffn_up_exps.weight 0x5af35bae0 0xcc00000
483 blk.40.attn_k.weight 0x5bbf5bae0 0x110000
484 blk.40.attn_k_norm.weight 0x5bc06bae0 0x200
485 blk.40.attn_norm.weight 0x5bc06bce0 0x2000
486 blk.40.attn_output.weight 0x5bc06dce0 0x880000
487 blk.40.attn_q.weight 0x5bc8edce0 0x880000
488 blk.40.attn_q_norm.weight 0x5bd16dce0 0x200
489 blk.40.attn_v.weight 0x5bd16dee0 0x200000
490 blk.40.ffn_down_exps.weight 0x5bd36dee0 0xcc00000
491 blk.40.ffn_gate_exps.weight 0x5c9f6dee0 0xcc00000
492 blk.40.ffn_gate_inp.weight 0x5d6b6dee0 0x100000
493 blk.40.ffn_norm.weight 0x5d6c6dee0 0x2000
494 blk.40.ffn_up_exps.weight 0x5d6c6fee0 0xcc00000
495 blk.41.attn_k.weight 0x5e386fee0 0x110000
496 blk.41.attn_k_norm.weight 0x5e397fee0 0x200
497 blk.41.attn_norm.weight 0x5e39800e0 0x2000
498 blk.41.attn_output.weight 0x5e39820e0 0x880000
499 blk.41.attn_q.weight 0x5e42020e0 0x880000
500 blk.41.attn_q_norm.weight 0x5e4a820e0 0x200
501 blk.41.attn_v.weight 0x5e4a822e0 0x200000
502 blk.41.ffn_down_exps.weight 0x5e4c822e0 0xcc00000
503 blk.41.ffn_gate_exps.weight 0x5f18822e0 0xcc00000
504 blk.41.ffn_gate_inp.weight 0x5fe4822e0 0x100000
505 blk.41.ffn_norm.weight 0x5fe5822e0 0x2000
506 blk.41.ffn_up_exps.weight 0x5fe5842e0 0xcc00000
507 blk.42.attn_k.weight 0x60b1842e0 0x110000
508 blk.42.attn_k_norm.weight 0x60b2942e0 0x200
509 blk.42.attn_norm.weight 0x60b2944e0 0x2000
510 blk.42.attn_output.weight 0x60b2964e0 0x880000
511 blk.42.attn_q.weight 0x60bb164e0 0x880000
512 blk.42.attn_q_norm.weight 0x60c3964e0 0x200
513 blk.42.attn_v.weight 0x60c3966e0 0x200000
514 blk.42.ffn_down_exps.weight 0x60c5966e0 0xcc00000
515 blk.42.ffn_gate_exps.weight 0x6191966e0 0xcc00000
516 blk.42.ffn_gate_inp.weight 0x625d966e0 0x100000
517 blk.42.ffn_norm.weight 0x625e966e0 0x2000
518 blk.42.ffn_up_exps.weight 0x625e986e0 0xcc00000
519 blk.43.attn_k.weight 0x632a986e0 0x110000
520 blk.43.attn_k_norm.weight 0x632ba86e0 0x200
521 blk.43.attn_norm.weight 0x632ba88e0 0x2000
522 blk.43.attn_output.weight 0x632baa8e0 0x880000
523 blk.43.attn_q.weight 0x63342a8e0 0x880000
524 blk.43.attn_q_norm.weight 0x633caa8e0 0x200
525 blk.43.attn_v.weight 0x633caaae0 0x200000
526 blk.43.ffn_down_exps.weight 0x633eaaae0 0xcc00000
527 blk.43.ffn_gate_exps.weight 0x640aaaae0 0xcc00000
528 blk.43.ffn_gate_inp.weight 0x64d6aaae0 0x100000
529 blk.43.ffn_norm.weight 0x64d7aaae0 0x2000
530 blk.43.ffn_up_exps.weight 0x64d7acae0 0xcc00000
531 blk.44.attn_k.weight 0x65a3acae0 0x110000
532 blk.44.attn_k_norm.weight 0x65a4bcae0 0x200
533 blk.44.attn_norm.weight 0x65a4bcce0 0x2000
534 blk.44.attn_output.weight 0x65a4bece0 0x880000
535 blk.44.attn_q.weight 0x65ad3ece0 0x880000
536 blk.44.attn_q_norm.weight 0x65b5bece0 0x200
537 blk.44.attn_v.weight 0x65b5beee0 0x200000
538 blk.44.ffn_down_exps.weight 0x65b7beee0 0xcc00000
539 blk.44.ffn_gate_exps.weight 0x6683beee0 0xcc00000
540 blk.44.ffn_gate_inp.weight 0x674fbeee0 0x100000
541 blk.44.ffn_norm.weight 0x6750beee0 0x2000
542 blk.44.ffn_up_exps.weight 0x6750c0ee0 0xcc00000
543 blk.45.attn_k.weight 0x681cc0ee0 0x110000
544 blk.45.attn_k_norm.weight 0x681dd0ee0 0x200
545 blk.45.attn_norm.weight 0x681dd10e0 0x2000
546 blk.45.attn_output.weight 0x681dd30e0 0x880000
547 blk.45.attn_q.weight 0x6826530e0 0x880000
548 blk.45.attn_q_norm.weight 0x682ed30e0 0x200
549 blk.45.attn_v.weight 0x682ed32e0 0x200000
550 blk.45.ffn_down_exps.weight 0x6830d32e0 0xcc00000
551 blk.45.ffn_gate_exps.weight 0x68fcd32e0 0xcc00000
552 blk.45.ffn_gate_inp.weight 0x69c8d32e0 0x100000
553 blk.45.ffn_norm.weight 0x69c9d32e0 0x2000
554 blk.45.ffn_up_exps.weight 0x69c9d52e0 0xcc00000

Base Tensor Group : ~622M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
0 output.weight Output (W) (~311M) 311164928 2048 x 151936 x 1 x 1 Q8_0
1 output_norm.weight Output Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
2 token_embd.weight Token Embedding (W) (~311M) 311164928 2048 x 151936 x 1 x 1 Q3_K
  • Total elements in base: (~622M) 622331904
  • Percentage of total elements: 2.13%

Block 0 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
3 blk.0.attn_k.weight Block 0 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
4 blk.0.attn_k_norm.weight Block 0 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
5 blk.0.attn_norm.weight Block 0 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
6 blk.0.attn_output.weight Block 0 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
7 blk.0.attn_q.weight Block 0 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
8 blk.0.attn_q_norm.weight Block 0 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
9 blk.0.attn_v.weight Block 0 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
10 blk.0.ffn_down_exps.weight Block 0 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
11 blk.0.ffn_gate_exps.weight Block 0 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
12 blk.0.ffn_gate_inp.weight Block 0 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
13 blk.0.ffn_norm.weight Block 0 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
14 blk.0.ffn_up_exps.weight Block 0 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.0: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 1 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
15 blk.1.attn_k.weight Block 1 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
16 blk.1.attn_k_norm.weight Block 1 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
17 blk.1.attn_norm.weight Block 1 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
18 blk.1.attn_output.weight Block 1 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
19 blk.1.attn_q.weight Block 1 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
20 blk.1.attn_q_norm.weight Block 1 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
21 blk.1.attn_v.weight Block 1 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
22 blk.1.ffn_down_exps.weight Block 1 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
23 blk.1.ffn_gate_exps.weight Block 1 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
24 blk.1.ffn_gate_inp.weight Block 1 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
25 blk.1.ffn_norm.weight Block 1 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
26 blk.1.ffn_up_exps.weight Block 1 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.1: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 2 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
27 blk.2.attn_k.weight Block 2 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
28 blk.2.attn_k_norm.weight Block 2 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
29 blk.2.attn_norm.weight Block 2 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
30 blk.2.attn_output.weight Block 2 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
31 blk.2.attn_q.weight Block 2 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
32 blk.2.attn_q_norm.weight Block 2 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
33 blk.2.attn_v.weight Block 2 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
34 blk.2.ffn_down_exps.weight Block 2 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
35 blk.2.ffn_gate_exps.weight Block 2 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
36 blk.2.ffn_gate_inp.weight Block 2 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
37 blk.2.ffn_norm.weight Block 2 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
38 blk.2.ffn_up_exps.weight Block 2 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.2: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 3 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
39 blk.3.attn_k.weight Block 3 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
40 blk.3.attn_k_norm.weight Block 3 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
41 blk.3.attn_norm.weight Block 3 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
42 blk.3.attn_output.weight Block 3 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
43 blk.3.attn_q.weight Block 3 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
44 blk.3.attn_q_norm.weight Block 3 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
45 blk.3.attn_v.weight Block 3 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
46 blk.3.ffn_down_exps.weight Block 3 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
47 blk.3.ffn_gate_exps.weight Block 3 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
48 blk.3.ffn_gate_inp.weight Block 3 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
49 blk.3.ffn_norm.weight Block 3 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
50 blk.3.ffn_up_exps.weight Block 3 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.3: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 4 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
51 blk.4.attn_k.weight Block 4 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
52 blk.4.attn_k_norm.weight Block 4 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
53 blk.4.attn_norm.weight Block 4 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
54 blk.4.attn_output.weight Block 4 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
55 blk.4.attn_q.weight Block 4 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
56 blk.4.attn_q_norm.weight Block 4 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
57 blk.4.attn_v.weight Block 4 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
58 blk.4.ffn_down_exps.weight Block 4 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
59 blk.4.ffn_gate_exps.weight Block 4 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
60 blk.4.ffn_gate_inp.weight Block 4 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
61 blk.4.ffn_norm.weight Block 4 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
62 blk.4.ffn_up_exps.weight Block 4 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.4: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 5 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
63 blk.5.attn_k.weight Block 5 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
64 blk.5.attn_k_norm.weight Block 5 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
65 blk.5.attn_norm.weight Block 5 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
66 blk.5.attn_output.weight Block 5 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
67 blk.5.attn_q.weight Block 5 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
68 blk.5.attn_q_norm.weight Block 5 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
69 blk.5.attn_v.weight Block 5 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
70 blk.5.ffn_down_exps.weight Block 5 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
71 blk.5.ffn_gate_exps.weight Block 5 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
72 blk.5.ffn_gate_inp.weight Block 5 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
73 blk.5.ffn_norm.weight Block 5 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
74 blk.5.ffn_up_exps.weight Block 5 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.5: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 6 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
75 blk.6.attn_k.weight Block 6 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
76 blk.6.attn_k_norm.weight Block 6 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
77 blk.6.attn_norm.weight Block 6 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
78 blk.6.attn_output.weight Block 6 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
79 blk.6.attn_q.weight Block 6 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
80 blk.6.attn_q_norm.weight Block 6 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
81 blk.6.attn_v.weight Block 6 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
82 blk.6.ffn_down_exps.weight Block 6 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
83 blk.6.ffn_gate_exps.weight Block 6 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
84 blk.6.ffn_gate_inp.weight Block 6 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
85 blk.6.ffn_norm.weight Block 6 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
86 blk.6.ffn_up_exps.weight Block 6 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.6: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 7 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
87 blk.7.attn_k.weight Block 7 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
88 blk.7.attn_k_norm.weight Block 7 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
89 blk.7.attn_norm.weight Block 7 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
90 blk.7.attn_output.weight Block 7 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
91 blk.7.attn_q.weight Block 7 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
92 blk.7.attn_q_norm.weight Block 7 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
93 blk.7.attn_v.weight Block 7 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
94 blk.7.ffn_down_exps.weight Block 7 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
95 blk.7.ffn_gate_exps.weight Block 7 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
96 blk.7.ffn_gate_inp.weight Block 7 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
97 blk.7.ffn_norm.weight Block 7 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
98 blk.7.ffn_up_exps.weight Block 7 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.7: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 8 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
99 blk.8.attn_k.weight Block 8 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
100 blk.8.attn_k_norm.weight Block 8 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
101 blk.8.attn_norm.weight Block 8 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
102 blk.8.attn_output.weight Block 8 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
103 blk.8.attn_q.weight Block 8 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
104 blk.8.attn_q_norm.weight Block 8 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
105 blk.8.attn_v.weight Block 8 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
106 blk.8.ffn_down_exps.weight Block 8 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
107 blk.8.ffn_gate_exps.weight Block 8 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
108 blk.8.ffn_gate_inp.weight Block 8 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
109 blk.8.ffn_norm.weight Block 8 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
110 blk.8.ffn_up_exps.weight Block 8 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.8: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 9 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
111 blk.9.attn_k.weight Block 9 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
112 blk.9.attn_k_norm.weight Block 9 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
113 blk.9.attn_norm.weight Block 9 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
114 blk.9.attn_output.weight Block 9 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
115 blk.9.attn_q.weight Block 9 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
116 blk.9.attn_q_norm.weight Block 9 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
117 blk.9.attn_v.weight Block 9 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
118 blk.9.ffn_down_exps.weight Block 9 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
119 blk.9.ffn_gate_exps.weight Block 9 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
120 blk.9.ffn_gate_inp.weight Block 9 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
121 blk.9.ffn_norm.weight Block 9 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
122 blk.9.ffn_up_exps.weight Block 9 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.9: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 10 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
123 blk.10.attn_k.weight Block 10 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
124 blk.10.attn_k_norm.weight Block 10 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
125 blk.10.attn_norm.weight Block 10 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
126 blk.10.attn_output.weight Block 10 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
127 blk.10.attn_q.weight Block 10 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
128 blk.10.attn_q_norm.weight Block 10 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
129 blk.10.attn_v.weight Block 10 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
130 blk.10.ffn_down_exps.weight Block 10 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
131 blk.10.ffn_gate_exps.weight Block 10 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
132 blk.10.ffn_gate_inp.weight Block 10 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
133 blk.10.ffn_norm.weight Block 10 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
134 blk.10.ffn_up_exps.weight Block 10 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.10: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 11 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
135 blk.11.attn_k.weight Block 11 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
136 blk.11.attn_k_norm.weight Block 11 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
137 blk.11.attn_norm.weight Block 11 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
138 blk.11.attn_output.weight Block 11 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
139 blk.11.attn_q.weight Block 11 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
140 blk.11.attn_q_norm.weight Block 11 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
141 blk.11.attn_v.weight Block 11 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
142 blk.11.ffn_down_exps.weight Block 11 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
143 blk.11.ffn_gate_exps.weight Block 11 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
144 blk.11.ffn_gate_inp.weight Block 11 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
145 blk.11.ffn_norm.weight Block 11 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
146 blk.11.ffn_up_exps.weight Block 11 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.11: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 12 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
147 blk.12.attn_k.weight Block 12 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
148 blk.12.attn_k_norm.weight Block 12 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
149 blk.12.attn_norm.weight Block 12 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
150 blk.12.attn_output.weight Block 12 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
151 blk.12.attn_q.weight Block 12 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
152 blk.12.attn_q_norm.weight Block 12 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
153 blk.12.attn_v.weight Block 12 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
154 blk.12.ffn_down_exps.weight Block 12 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
155 blk.12.ffn_gate_exps.weight Block 12 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
156 blk.12.ffn_gate_inp.weight Block 12 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
157 blk.12.ffn_norm.weight Block 12 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
158 blk.12.ffn_up_exps.weight Block 12 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.12: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 13 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
159 blk.13.attn_k.weight Block 13 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
160 blk.13.attn_k_norm.weight Block 13 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
161 blk.13.attn_norm.weight Block 13 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
162 blk.13.attn_output.weight Block 13 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
163 blk.13.attn_q.weight Block 13 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
164 blk.13.attn_q_norm.weight Block 13 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
165 blk.13.attn_v.weight Block 13 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
166 blk.13.ffn_down_exps.weight Block 13 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
167 blk.13.ffn_gate_exps.weight Block 13 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
168 blk.13.ffn_gate_inp.weight Block 13 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
169 blk.13.ffn_norm.weight Block 13 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
170 blk.13.ffn_up_exps.weight Block 13 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.13: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 14 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
171 blk.14.attn_k.weight Block 14 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
172 blk.14.attn_k_norm.weight Block 14 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
173 blk.14.attn_norm.weight Block 14 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
174 blk.14.attn_output.weight Block 14 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
175 blk.14.attn_q.weight Block 14 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
176 blk.14.attn_q_norm.weight Block 14 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
177 blk.14.attn_v.weight Block 14 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
178 blk.14.ffn_down_exps.weight Block 14 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
179 blk.14.ffn_gate_exps.weight Block 14 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
180 blk.14.ffn_gate_inp.weight Block 14 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
181 blk.14.ffn_norm.weight Block 14 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
182 blk.14.ffn_up_exps.weight Block 14 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.14: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 15 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
183 blk.15.attn_k.weight Block 15 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
184 blk.15.attn_k_norm.weight Block 15 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
185 blk.15.attn_norm.weight Block 15 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
186 blk.15.attn_output.weight Block 15 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
187 blk.15.attn_q.weight Block 15 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
188 blk.15.attn_q_norm.weight Block 15 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
189 blk.15.attn_v.weight Block 15 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
190 blk.15.ffn_down_exps.weight Block 15 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
191 blk.15.ffn_gate_exps.weight Block 15 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
192 blk.15.ffn_gate_inp.weight Block 15 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
193 blk.15.ffn_norm.weight Block 15 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
194 blk.15.ffn_up_exps.weight Block 15 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.15: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 16 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
195 blk.16.attn_k.weight Block 16 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
196 blk.16.attn_k_norm.weight Block 16 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
197 blk.16.attn_norm.weight Block 16 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
198 blk.16.attn_output.weight Block 16 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
199 blk.16.attn_q.weight Block 16 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
200 blk.16.attn_q_norm.weight Block 16 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
201 blk.16.attn_v.weight Block 16 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
202 blk.16.ffn_down_exps.weight Block 16 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
203 blk.16.ffn_gate_exps.weight Block 16 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
204 blk.16.ffn_gate_inp.weight Block 16 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
205 blk.16.ffn_norm.weight Block 16 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
206 blk.16.ffn_up_exps.weight Block 16 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.16: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 17 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
207 blk.17.attn_k.weight Block 17 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
208 blk.17.attn_k_norm.weight Block 17 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
209 blk.17.attn_norm.weight Block 17 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
210 blk.17.attn_output.weight Block 17 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
211 blk.17.attn_q.weight Block 17 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
212 blk.17.attn_q_norm.weight Block 17 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
213 blk.17.attn_v.weight Block 17 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
214 blk.17.ffn_down_exps.weight Block 17 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
215 blk.17.ffn_gate_exps.weight Block 17 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
216 blk.17.ffn_gate_inp.weight Block 17 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
217 blk.17.ffn_norm.weight Block 17 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
218 blk.17.ffn_up_exps.weight Block 17 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.17: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 18 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
219 blk.18.attn_k.weight Block 18 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
220 blk.18.attn_k_norm.weight Block 18 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
221 blk.18.attn_norm.weight Block 18 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
222 blk.18.attn_output.weight Block 18 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
223 blk.18.attn_q.weight Block 18 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
224 blk.18.attn_q_norm.weight Block 18 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
225 blk.18.attn_v.weight Block 18 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
226 blk.18.ffn_down_exps.weight Block 18 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
227 blk.18.ffn_gate_exps.weight Block 18 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
228 blk.18.ffn_gate_inp.weight Block 18 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
229 blk.18.ffn_norm.weight Block 18 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
230 blk.18.ffn_up_exps.weight Block 18 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.18: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 19 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
231 blk.19.attn_k.weight Block 19 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
232 blk.19.attn_k_norm.weight Block 19 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
233 blk.19.attn_norm.weight Block 19 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
234 blk.19.attn_output.weight Block 19 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
235 blk.19.attn_q.weight Block 19 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
236 blk.19.attn_q_norm.weight Block 19 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
237 blk.19.attn_v.weight Block 19 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
238 blk.19.ffn_down_exps.weight Block 19 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
239 blk.19.ffn_gate_exps.weight Block 19 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
240 blk.19.ffn_gate_inp.weight Block 19 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
241 blk.19.ffn_norm.weight Block 19 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
242 blk.19.ffn_up_exps.weight Block 19 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.19: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 20 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
243 blk.20.attn_k.weight Block 20 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
244 blk.20.attn_k_norm.weight Block 20 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
245 blk.20.attn_norm.weight Block 20 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
246 blk.20.attn_output.weight Block 20 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
247 blk.20.attn_q.weight Block 20 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
248 blk.20.attn_q_norm.weight Block 20 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
249 blk.20.attn_v.weight Block 20 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
250 blk.20.ffn_down_exps.weight Block 20 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
251 blk.20.ffn_gate_exps.weight Block 20 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
252 blk.20.ffn_gate_inp.weight Block 20 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
253 blk.20.ffn_norm.weight Block 20 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
254 blk.20.ffn_up_exps.weight Block 20 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.20: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 21 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
255 blk.21.attn_k.weight Block 21 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
256 blk.21.attn_k_norm.weight Block 21 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
257 blk.21.attn_norm.weight Block 21 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
258 blk.21.attn_output.weight Block 21 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
259 blk.21.attn_q.weight Block 21 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
260 blk.21.attn_q_norm.weight Block 21 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
261 blk.21.attn_v.weight Block 21 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
262 blk.21.ffn_down_exps.weight Block 21 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
263 blk.21.ffn_gate_exps.weight Block 21 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
264 blk.21.ffn_gate_inp.weight Block 21 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
265 blk.21.ffn_norm.weight Block 21 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
266 blk.21.ffn_up_exps.weight Block 21 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.21: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 22 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
267 blk.22.attn_k.weight Block 22 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
268 blk.22.attn_k_norm.weight Block 22 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
269 blk.22.attn_norm.weight Block 22 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
270 blk.22.attn_output.weight Block 22 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
271 blk.22.attn_q.weight Block 22 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
272 blk.22.attn_q_norm.weight Block 22 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
273 blk.22.attn_v.weight Block 22 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
274 blk.22.ffn_down_exps.weight Block 22 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
275 blk.22.ffn_gate_exps.weight Block 22 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
276 blk.22.ffn_gate_inp.weight Block 22 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
277 blk.22.ffn_norm.weight Block 22 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
278 blk.22.ffn_up_exps.weight Block 22 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.22: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 23 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
279 blk.23.attn_k.weight Block 23 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q6_K
280 blk.23.attn_k_norm.weight Block 23 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
281 blk.23.attn_norm.weight Block 23 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
282 blk.23.attn_output.weight Block 23 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
283 blk.23.attn_q.weight Block 23 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q6_K
284 blk.23.attn_q_norm.weight Block 23 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
285 blk.23.attn_v.weight Block 23 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
286 blk.23.ffn_down_exps.weight Block 23 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
287 blk.23.ffn_gate_exps.weight Block 23 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
288 blk.23.ffn_gate_inp.weight Block 23 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
289 blk.23.ffn_norm.weight Block 23 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
290 blk.23.ffn_up_exps.weight Block 23 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.23: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 24 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
291 blk.24.attn_k.weight Block 24 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
292 blk.24.attn_k_norm.weight Block 24 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
293 blk.24.attn_norm.weight Block 24 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
294 blk.24.attn_output.weight Block 24 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
295 blk.24.attn_q.weight Block 24 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
296 blk.24.attn_q_norm.weight Block 24 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
297 blk.24.attn_v.weight Block 24 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
298 blk.24.ffn_down_exps.weight Block 24 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
299 blk.24.ffn_gate_exps.weight Block 24 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
300 blk.24.ffn_gate_inp.weight Block 24 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
301 blk.24.ffn_norm.weight Block 24 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
302 blk.24.ffn_up_exps.weight Block 24 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q6_K
  • Total elements in blk.24: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 25 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
303 blk.25.attn_k.weight Block 25 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
304 blk.25.attn_k_norm.weight Block 25 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
305 blk.25.attn_norm.weight Block 25 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
306 blk.25.attn_output.weight Block 25 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
307 blk.25.attn_q.weight Block 25 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
308 blk.25.attn_q_norm.weight Block 25 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
309 blk.25.attn_v.weight Block 25 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
310 blk.25.ffn_down_exps.weight Block 25 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
311 blk.25.ffn_gate_exps.weight Block 25 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
312 blk.25.ffn_gate_inp.weight Block 25 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
313 blk.25.ffn_norm.weight Block 25 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
314 blk.25.ffn_up_exps.weight Block 25 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.25: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 26 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
315 blk.26.attn_k.weight Block 26 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
316 blk.26.attn_k_norm.weight Block 26 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
317 blk.26.attn_norm.weight Block 26 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
318 blk.26.attn_output.weight Block 26 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
319 blk.26.attn_q.weight Block 26 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
320 blk.26.attn_q_norm.weight Block 26 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
321 blk.26.attn_v.weight Block 26 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
322 blk.26.ffn_down_exps.weight Block 26 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
323 blk.26.ffn_gate_exps.weight Block 26 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
324 blk.26.ffn_gate_inp.weight Block 26 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
325 blk.26.ffn_norm.weight Block 26 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
326 blk.26.ffn_up_exps.weight Block 26 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.26: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 27 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
327 blk.27.attn_k.weight Block 27 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
328 blk.27.attn_k_norm.weight Block 27 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
329 blk.27.attn_norm.weight Block 27 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
330 blk.27.attn_output.weight Block 27 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
331 blk.27.attn_q.weight Block 27 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
332 blk.27.attn_q_norm.weight Block 27 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
333 blk.27.attn_v.weight Block 27 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
334 blk.27.ffn_down_exps.weight Block 27 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
335 blk.27.ffn_gate_exps.weight Block 27 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
336 blk.27.ffn_gate_inp.weight Block 27 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
337 blk.27.ffn_norm.weight Block 27 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
338 blk.27.ffn_up_exps.weight Block 27 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.27: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 28 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
339 blk.28.attn_k.weight Block 28 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
340 blk.28.attn_k_norm.weight Block 28 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
341 blk.28.attn_norm.weight Block 28 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
342 blk.28.attn_output.weight Block 28 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
343 blk.28.attn_q.weight Block 28 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
344 blk.28.attn_q_norm.weight Block 28 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
345 blk.28.attn_v.weight Block 28 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
346 blk.28.ffn_down_exps.weight Block 28 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
347 blk.28.ffn_gate_exps.weight Block 28 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
348 blk.28.ffn_gate_inp.weight Block 28 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
349 blk.28.ffn_norm.weight Block 28 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
350 blk.28.ffn_up_exps.weight Block 28 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.28: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 29 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
351 blk.29.attn_k.weight Block 29 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
352 blk.29.attn_k_norm.weight Block 29 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
353 blk.29.attn_norm.weight Block 29 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
354 blk.29.attn_output.weight Block 29 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
355 blk.29.attn_q.weight Block 29 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
356 blk.29.attn_q_norm.weight Block 29 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
357 blk.29.attn_v.weight Block 29 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
358 blk.29.ffn_down_exps.weight Block 29 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
359 blk.29.ffn_gate_exps.weight Block 29 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
360 blk.29.ffn_gate_inp.weight Block 29 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
361 blk.29.ffn_norm.weight Block 29 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
362 blk.29.ffn_up_exps.weight Block 29 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.29: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 30 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
363 blk.30.attn_k.weight Block 30 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
364 blk.30.attn_k_norm.weight Block 30 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
365 blk.30.attn_norm.weight Block 30 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
366 blk.30.attn_output.weight Block 30 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
367 blk.30.attn_q.weight Block 30 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
368 blk.30.attn_q_norm.weight Block 30 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
369 blk.30.attn_v.weight Block 30 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
370 blk.30.ffn_down_exps.weight Block 30 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
371 blk.30.ffn_gate_exps.weight Block 30 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
372 blk.30.ffn_gate_inp.weight Block 30 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
373 blk.30.ffn_norm.weight Block 30 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
374 blk.30.ffn_up_exps.weight Block 30 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.30: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 31 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
375 blk.31.attn_k.weight Block 31 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
376 blk.31.attn_k_norm.weight Block 31 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
377 blk.31.attn_norm.weight Block 31 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
378 blk.31.attn_output.weight Block 31 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
379 blk.31.attn_q.weight Block 31 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
380 blk.31.attn_q_norm.weight Block 31 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
381 blk.31.attn_v.weight Block 31 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
382 blk.31.ffn_down_exps.weight Block 31 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
383 blk.31.ffn_gate_exps.weight Block 31 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
384 blk.31.ffn_gate_inp.weight Block 31 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
385 blk.31.ffn_norm.weight Block 31 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
386 blk.31.ffn_up_exps.weight Block 31 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.31: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 32 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
387 blk.32.attn_k.weight Block 32 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
388 blk.32.attn_k_norm.weight Block 32 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
389 blk.32.attn_norm.weight Block 32 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
390 blk.32.attn_output.weight Block 32 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
391 blk.32.attn_q.weight Block 32 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
392 blk.32.attn_q_norm.weight Block 32 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
393 blk.32.attn_v.weight Block 32 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
394 blk.32.ffn_down_exps.weight Block 32 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
395 blk.32.ffn_gate_exps.weight Block 32 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
396 blk.32.ffn_gate_inp.weight Block 32 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
397 blk.32.ffn_norm.weight Block 32 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
398 blk.32.ffn_up_exps.weight Block 32 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.32: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 33 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
399 blk.33.attn_k.weight Block 33 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
400 blk.33.attn_k_norm.weight Block 33 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
401 blk.33.attn_norm.weight Block 33 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
402 blk.33.attn_output.weight Block 33 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
403 blk.33.attn_q.weight Block 33 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
404 blk.33.attn_q_norm.weight Block 33 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
405 blk.33.attn_v.weight Block 33 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
406 blk.33.ffn_down_exps.weight Block 33 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
407 blk.33.ffn_gate_exps.weight Block 33 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
408 blk.33.ffn_gate_inp.weight Block 33 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
409 blk.33.ffn_norm.weight Block 33 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
410 blk.33.ffn_up_exps.weight Block 33 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.33: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 34 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
411 blk.34.attn_k.weight Block 34 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
412 blk.34.attn_k_norm.weight Block 34 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
413 blk.34.attn_norm.weight Block 34 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
414 blk.34.attn_output.weight Block 34 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
415 blk.34.attn_q.weight Block 34 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
416 blk.34.attn_q_norm.weight Block 34 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
417 blk.34.attn_v.weight Block 34 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
418 blk.34.ffn_down_exps.weight Block 34 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
419 blk.34.ffn_gate_exps.weight Block 34 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
420 blk.34.ffn_gate_inp.weight Block 34 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
421 blk.34.ffn_norm.weight Block 34 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
422 blk.34.ffn_up_exps.weight Block 34 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.34: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 35 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
423 blk.35.attn_k.weight Block 35 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
424 blk.35.attn_k_norm.weight Block 35 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
425 blk.35.attn_norm.weight Block 35 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
426 blk.35.attn_output.weight Block 35 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
427 blk.35.attn_q.weight Block 35 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
428 blk.35.attn_q_norm.weight Block 35 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
429 blk.35.attn_v.weight Block 35 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
430 blk.35.ffn_down_exps.weight Block 35 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
431 blk.35.ffn_gate_exps.weight Block 35 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
432 blk.35.ffn_gate_inp.weight Block 35 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
433 blk.35.ffn_norm.weight Block 35 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
434 blk.35.ffn_up_exps.weight Block 35 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.35: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 36 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
435 blk.36.attn_k.weight Block 36 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
436 blk.36.attn_k_norm.weight Block 36 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
437 blk.36.attn_norm.weight Block 36 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
438 blk.36.attn_output.weight Block 36 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
439 blk.36.attn_q.weight Block 36 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
440 blk.36.attn_q_norm.weight Block 36 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
441 blk.36.attn_v.weight Block 36 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
442 blk.36.ffn_down_exps.weight Block 36 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
443 blk.36.ffn_gate_exps.weight Block 36 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
444 blk.36.ffn_gate_inp.weight Block 36 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
445 blk.36.ffn_norm.weight Block 36 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
446 blk.36.ffn_up_exps.weight Block 36 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.36: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 37 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
447 blk.37.attn_k.weight Block 37 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
448 blk.37.attn_k_norm.weight Block 37 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
449 blk.37.attn_norm.weight Block 37 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
450 blk.37.attn_output.weight Block 37 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
451 blk.37.attn_q.weight Block 37 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
452 blk.37.attn_q_norm.weight Block 37 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
453 blk.37.attn_v.weight Block 37 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
454 blk.37.ffn_down_exps.weight Block 37 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
455 blk.37.ffn_gate_exps.weight Block 37 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
456 blk.37.ffn_gate_inp.weight Block 37 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
457 blk.37.ffn_norm.weight Block 37 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
458 blk.37.ffn_up_exps.weight Block 37 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.37: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 38 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
459 blk.38.attn_k.weight Block 38 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
460 blk.38.attn_k_norm.weight Block 38 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
461 blk.38.attn_norm.weight Block 38 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
462 blk.38.attn_output.weight Block 38 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
463 blk.38.attn_q.weight Block 38 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
464 blk.38.attn_q_norm.weight Block 38 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
465 blk.38.attn_v.weight Block 38 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
466 blk.38.ffn_down_exps.weight Block 38 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
467 blk.38.ffn_gate_exps.weight Block 38 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
468 blk.38.ffn_gate_inp.weight Block 38 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
469 blk.38.ffn_norm.weight Block 38 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
470 blk.38.ffn_up_exps.weight Block 38 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.38: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 39 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
471 blk.39.attn_k.weight Block 39 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
472 blk.39.attn_k_norm.weight Block 39 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
473 blk.39.attn_norm.weight Block 39 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
474 blk.39.attn_output.weight Block 39 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
475 blk.39.attn_q.weight Block 39 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
476 blk.39.attn_q_norm.weight Block 39 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
477 blk.39.attn_v.weight Block 39 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
478 blk.39.ffn_down_exps.weight Block 39 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
479 blk.39.ffn_gate_exps.weight Block 39 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
480 blk.39.ffn_gate_inp.weight Block 39 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
481 blk.39.ffn_norm.weight Block 39 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
482 blk.39.ffn_up_exps.weight Block 39 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.39: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 40 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
483 blk.40.attn_k.weight Block 40 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
484 blk.40.attn_k_norm.weight Block 40 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
485 blk.40.attn_norm.weight Block 40 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
486 blk.40.attn_output.weight Block 40 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
487 blk.40.attn_q.weight Block 40 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
488 blk.40.attn_q_norm.weight Block 40 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
489 blk.40.attn_v.weight Block 40 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
490 blk.40.ffn_down_exps.weight Block 40 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
491 blk.40.ffn_gate_exps.weight Block 40 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
492 blk.40.ffn_gate_inp.weight Block 40 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
493 blk.40.ffn_norm.weight Block 40 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
494 blk.40.ffn_up_exps.weight Block 40 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.40: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 41 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
495 blk.41.attn_k.weight Block 41 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
496 blk.41.attn_k_norm.weight Block 41 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
497 blk.41.attn_norm.weight Block 41 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
498 blk.41.attn_output.weight Block 41 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
499 blk.41.attn_q.weight Block 41 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
500 blk.41.attn_q_norm.weight Block 41 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
501 blk.41.attn_v.weight Block 41 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
502 blk.41.ffn_down_exps.weight Block 41 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
503 blk.41.ffn_gate_exps.weight Block 41 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
504 blk.41.ffn_gate_inp.weight Block 41 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
505 blk.41.ffn_norm.weight Block 41 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
506 blk.41.ffn_up_exps.weight Block 41 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.41: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 42 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
507 blk.42.attn_k.weight Block 42 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
508 blk.42.attn_k_norm.weight Block 42 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
509 blk.42.attn_norm.weight Block 42 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
510 blk.42.attn_output.weight Block 42 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
511 blk.42.attn_q.weight Block 42 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
512 blk.42.attn_q_norm.weight Block 42 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
513 blk.42.attn_v.weight Block 42 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
514 blk.42.ffn_down_exps.weight Block 42 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
515 blk.42.ffn_gate_exps.weight Block 42 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
516 blk.42.ffn_gate_inp.weight Block 42 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
517 blk.42.ffn_norm.weight Block 42 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
518 blk.42.ffn_up_exps.weight Block 42 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.42: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 43 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
519 blk.43.attn_k.weight Block 43 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
520 blk.43.attn_k_norm.weight Block 43 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
521 blk.43.attn_norm.weight Block 43 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
522 blk.43.attn_output.weight Block 43 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
523 blk.43.attn_q.weight Block 43 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
524 blk.43.attn_q_norm.weight Block 43 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
525 blk.43.attn_v.weight Block 43 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
526 blk.43.ffn_down_exps.weight Block 43 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
527 blk.43.ffn_gate_exps.weight Block 43 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
528 blk.43.ffn_gate_inp.weight Block 43 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
529 blk.43.ffn_norm.weight Block 43 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
530 blk.43.ffn_up_exps.weight Block 43 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.43: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 44 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
531 blk.44.attn_k.weight Block 44 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
532 blk.44.attn_k_norm.weight Block 44 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
533 blk.44.attn_norm.weight Block 44 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
534 blk.44.attn_output.weight Block 44 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
535 blk.44.attn_q.weight Block 44 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
536 blk.44.attn_q_norm.weight Block 44 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
537 blk.44.attn_v.weight Block 44 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
538 blk.44.ffn_down_exps.weight Block 44 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
539 blk.44.ffn_gate_exps.weight Block 44 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
540 blk.44.ffn_gate_inp.weight Block 44 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
541 blk.44.ffn_norm.weight Block 44 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
542 blk.44.ffn_up_exps.weight Block 44 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.44: (~623M) 623120640
  • Percentage of total elements: 2.13%

Block 45 Tensor Group : ~623M Elements

T_ID Tensor Layer Name Human Friendly Tensor Layer Name Elements Shape Type
543 blk.45.attn_k.weight Block 45 Attention Key (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 Q8_0
544 blk.45.attn_k_norm.weight Block 45 Attn_K_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
545 blk.45.attn_norm.weight Block 45 Attention Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
546 blk.45.attn_output.weight Block 45 Attention Output (W) ( ~8M) 8388608 4096 x 2048 x 1 x 1 Q8_0
547 blk.45.attn_q.weight Block 45 Attention Query (W) ( ~8M) 8388608 2048 x 4096 x 1 x 1 Q8_0
548 blk.45.attn_q_norm.weight Block 45 Attn_Q_Norm (W) ( 128) 128 128 x 1 x 1 x 1 F32
549 blk.45.attn_v.weight Block 45 Attention Value (W) ( ~1M) 1048576 2048 x 512 x 1 x 1 F16
550 blk.45.ffn_down_exps.weight Block 45 Ffn_Down_Exps (W) (~201M) 201326592 768 x 2048 x 128 x 1 Q8_0
551 blk.45.ffn_gate_exps.weight Block 45 Ffn_Gate_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
552 blk.45.ffn_gate_inp.weight Block 45 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) (~262K) 262144 2048 x 128 x 1 x 1 F32
553 blk.45.ffn_norm.weight Block 45 Feed-Forward Network Normalization (W) ( ~2K) 2048 2048 x 1 x 1 x 1 F32
554 blk.45.ffn_up_exps.weight Block 45 Ffn_Up_Exps (W) (~201M) 201326592 2048 x 768 x 128 x 1 Q8_0
  • Total elements in blk.45: (~623M) 623120640
  • Percentage of total elements: 2.13%