Qwen3-30B-A3B-Q8_0.gguf - GGUF Internal File Dump
- Endian: LITTLE endian
Key Value Metadata Store
There are 45 key-value pairs in this file
POS | TYPE | Count | Key | Value |
---|---|---|---|---|
1 | UINT32 | 1 | GGUF.version | 3 |
2 | UINT64 | 1 | GGUF.tensor_count | 555 |
3 | UINT64 | 1 | GGUF.kv_count | 42 |
4 | STRING | 1 | general.architecture | qwen3moe |
5 | STRING | 1 | general.type | model |
6 | STRING | 1 | general.name | Qwen3 30B A3B |
7 | STRING | 1 | general.basename | Qwen3 |
8 | STRING | 1 | general.size_label | 30B-A3B |
9 | STRING | 1 | general.license | apache-2.0 |
10 | STRING | 1 | general.license.link | https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE |
11 | UINT32 | 1 | general.base_model.count | 1 |
12 | STRING | 1 | general.base_model.0.name | Qwen3 30B A3B Base |
13 | STRING | 1 | general.base_model.0.organization | Qwen |
14 | STRING | 1 | general.base_model.0.repo_url | https://huggingface.co/Qwen/Qwen3-30B-A3B-Base |
15 | [STRING] | 1 | general.tags | [ text-generation ] |
16 | UINT32 | 1 | qwen3moe.context_length | 40960 |
17 | UINT32 | 1 | qwen3moe.embedding_length | 2048 |
18 | UINT32 | 1 | qwen3moe.feed_forward_length | 6144 |
19 | UINT32 | 1 | qwen3moe.attention.head_count | 32 |
20 | UINT32 | 1 | qwen3moe.attention.head_count_kv | 4 |
21 | FLOAT32 | 1 | qwen3moe.rope.freq_base | 1000000.0 |
22 | FLOAT32 | 1 | qwen3moe.attention.layer_norm_rms_epsilon | 1e-06 |
23 | UINT32 | 1 | qwen3moe.expert_used_count | 8 |
24 | UINT32 | 1 | qwen3moe.attention.key_length | 128 |
25 | UINT32 | 1 | qwen3moe.attention.value_length | 128 |
26 | UINT32 | 1 | qwen3moe.expert_count | 128 |
27 | UINT32 | 1 | qwen3moe.expert_feed_forward_length | 768 |
28 | STRING | 1 | tokenizer.ggml.model | gpt2 |
29 | STRING | 1 | tokenizer.ggml.pre | qwen2 |
30 | [STRING] | 151936 | tokenizer.ggml.tokens | [ ! , " , # , $ , % , ... ] |
31 | [INT32] | 151936 | tokenizer.ggml.token_type | [ 1, 1, 1, 1, 1, 1, 1, ... ] |
32 | [STRING] | 151387 | tokenizer.ggml.merges | [ Ġ Ġ , ĠĠ ĠĠ , i n , Ġ t , ĠĠĠĠ ĠĠĠĠ , ... ] |
33 | UINT32 | 1 | tokenizer.ggml.eos_token_id | 151645 |
34 | UINT32 | 1 | tokenizer.ggml.padding_token_id | 151643 |
35 | UINT32 | 1 | tokenizer.ggml.bos_token_id | 151643 |
36 | BOOL | 1 | tokenizer.ggml.add_bos_token | False |
37 | STRING | 1 | tokenizer.chat_template | `{%- if tools %}{{- '< |
38 | UINT32 | 1 | general.quantization_version | 2 |
39 | UINT32 | 1 | general.file_type | 7 |
40 | BOOL | 1 | general.pruned | True |
41 | UINT32 | 1 | qwen3moe.block_count | 46 |
42 | STRING | 1 | quantize.imatrix.file | ./imatrix/imatrix-Qwen3-30B-A3B-medium.dat |
43 | STRING | 1 | quantize.imatrix.dataset | ../../datasets/imatrix/combined_all_medium.txt |
44 | INT32 | 1 | quantize.imatrix.entries_count | 385 |
45 | INT32 | 1 | quantize.imatrix.chunks_count | 6946 |
Tensors Overview ~29B Elements
Total number of elements in all tensors: 29285881344 Elements
- Qwen3-30B-A3B-Q8_0.gguf - GGUF Internal File Dump
- Key Value Metadata Store
- Tensors Overview ~29B Elements
- Tensor Data Offset
- Base Tensor Group : ~622M Elements
- Block 0 Tensor Group : ~623M Elements
- Block 1 Tensor Group : ~623M Elements
- Block 2 Tensor Group : ~623M Elements
- Block 3 Tensor Group : ~623M Elements
- Block 4 Tensor Group : ~623M Elements
- Block 5 Tensor Group : ~623M Elements
- Block 6 Tensor Group : ~623M Elements
- Block 7 Tensor Group : ~623M Elements
- Block 8 Tensor Group : ~623M Elements
- Block 9 Tensor Group : ~623M Elements
- Block 10 Tensor Group : ~623M Elements
- Block 11 Tensor Group : ~623M Elements
- Block 12 Tensor Group : ~623M Elements
- Block 13 Tensor Group : ~623M Elements
- Block 14 Tensor Group : ~623M Elements
- Block 15 Tensor Group : ~623M Elements
- Block 16 Tensor Group : ~623M Elements
- Block 17 Tensor Group : ~623M Elements
- Block 18 Tensor Group : ~623M Elements
- Block 19 Tensor Group : ~623M Elements
- Block 20 Tensor Group : ~623M Elements
- Block 21 Tensor Group : ~623M Elements
- Block 22 Tensor Group : ~623M Elements
- Block 23 Tensor Group : ~623M Elements
- Block 24 Tensor Group : ~623M Elements
- Block 25 Tensor Group : ~623M Elements
- Block 26 Tensor Group : ~623M Elements
- Block 27 Tensor Group : ~623M Elements
- Block 28 Tensor Group : ~623M Elements
- Block 29 Tensor Group : ~623M Elements
- Block 30 Tensor Group : ~623M Elements
- Block 31 Tensor Group : ~623M Elements
- Block 32 Tensor Group : ~623M Elements
- Block 33 Tensor Group : ~623M Elements
- Block 34 Tensor Group : ~623M Elements
- Block 35 Tensor Group : ~623M Elements
- Block 36 Tensor Group : ~623M Elements
- Block 37 Tensor Group : ~623M Elements
- Block 38 Tensor Group : ~623M Elements
- Block 39 Tensor Group : ~623M Elements
- Block 40 Tensor Group : ~623M Elements
- Block 41 Tensor Group : ~623M Elements
- Block 42 Tensor Group : ~623M Elements
- Block 43 Tensor Group : ~623M Elements
- Block 44 Tensor Group : ~623M Elements
- Block 45 Tensor Group : ~623M Elements
Tensor Data Offset
This table contains the offset and data segment relative to start of file
T_ID | Tensor Layer Name | Data Offset (B) | Data Size (B) |
---|---|---|---|
0 | output.weight | 0x5b12e0 | 0x13b4c000 |
1 | output_norm.weight | 0x140fd2e0 | 0x2000 |
2 | token_embd.weight | 0x140ff2e0 | 0x7f82800 |
3 | blk.0.attn_k.weight | 0x1c081ae0 | 0xd2000 |
4 | blk.0.attn_k_norm.weight | 0x1c153ae0 | 0x200 |
5 | blk.0.attn_norm.weight | 0x1c153ce0 | 0x2000 |
6 | blk.0.attn_output.weight | 0x1c155ce0 | 0x880000 |
7 | blk.0.attn_q.weight | 0x1c9d5ce0 | 0x690000 |
8 | blk.0.attn_q_norm.weight | 0x1d065ce0 | 0x200 |
9 | blk.0.attn_v.weight | 0x1d065ee0 | 0x200000 |
10 | blk.0.ffn_down_exps.weight | 0x1d265ee0 | 0xcc00000 |
11 | blk.0.ffn_gate_exps.weight | 0x29e65ee0 | 0x9d80000 |
12 | blk.0.ffn_gate_inp.weight | 0x33be5ee0 | 0x100000 |
13 | blk.0.ffn_norm.weight | 0x33ce5ee0 | 0x2000 |
14 | blk.0.ffn_up_exps.weight | 0x33ce7ee0 | 0x9d80000 |
15 | blk.1.attn_k.weight | 0x3da67ee0 | 0xd2000 |
16 | blk.1.attn_k_norm.weight | 0x3db39ee0 | 0x200 |
17 | blk.1.attn_norm.weight | 0x3db3a0e0 | 0x2000 |
18 | blk.1.attn_output.weight | 0x3db3c0e0 | 0x880000 |
19 | blk.1.attn_q.weight | 0x3e3bc0e0 | 0x690000 |
20 | blk.1.attn_q_norm.weight | 0x3ea4c0e0 | 0x200 |
21 | blk.1.attn_v.weight | 0x3ea4c2e0 | 0x200000 |
22 | blk.1.ffn_down_exps.weight | 0x3ec4c2e0 | 0xcc00000 |
23 | blk.1.ffn_gate_exps.weight | 0x4b84c2e0 | 0x9d80000 |
24 | blk.1.ffn_gate_inp.weight | 0x555cc2e0 | 0x100000 |
25 | blk.1.ffn_norm.weight | 0x556cc2e0 | 0x2000 |
26 | blk.1.ffn_up_exps.weight | 0x556ce2e0 | 0x9d80000 |
27 | blk.2.attn_k.weight | 0x5f44e2e0 | 0xd2000 |
28 | blk.2.attn_k_norm.weight | 0x5f5202e0 | 0x200 |
29 | blk.2.attn_norm.weight | 0x5f5204e0 | 0x2000 |
30 | blk.2.attn_output.weight | 0x5f5224e0 | 0x880000 |
31 | blk.2.attn_q.weight | 0x5fda24e0 | 0x690000 |
32 | blk.2.attn_q_norm.weight | 0x604324e0 | 0x200 |
33 | blk.2.attn_v.weight | 0x604326e0 | 0x200000 |
34 | blk.2.ffn_down_exps.weight | 0x606326e0 | 0xcc00000 |
35 | blk.2.ffn_gate_exps.weight | 0x6d2326e0 | 0x9d80000 |
36 | blk.2.ffn_gate_inp.weight | 0x76fb26e0 | 0x100000 |
37 | blk.2.ffn_norm.weight | 0x770b26e0 | 0x2000 |
38 | blk.2.ffn_up_exps.weight | 0x770b46e0 | 0x9d80000 |
39 | blk.3.attn_k.weight | 0x80e346e0 | 0xd2000 |
40 | blk.3.attn_k_norm.weight | 0x80f066e0 | 0x200 |
41 | blk.3.attn_norm.weight | 0x80f068e0 | 0x2000 |
42 | blk.3.attn_output.weight | 0x80f088e0 | 0x880000 |
43 | blk.3.attn_q.weight | 0x817888e0 | 0x690000 |
44 | blk.3.attn_q_norm.weight | 0x81e188e0 | 0x200 |
45 | blk.3.attn_v.weight | 0x81e18ae0 | 0x200000 |
46 | blk.3.ffn_down_exps.weight | 0x82018ae0 | 0xcc00000 |
47 | blk.3.ffn_gate_exps.weight | 0x8ec18ae0 | 0x9d80000 |
48 | blk.3.ffn_gate_inp.weight | 0x98998ae0 | 0x100000 |
49 | blk.3.ffn_norm.weight | 0x98a98ae0 | 0x2000 |
50 | blk.3.ffn_up_exps.weight | 0x98a9aae0 | 0x9d80000 |
51 | blk.4.attn_k.weight | 0xa281aae0 | 0xd2000 |
52 | blk.4.attn_k_norm.weight | 0xa28ecae0 | 0x200 |
53 | blk.4.attn_norm.weight | 0xa28ecce0 | 0x2000 |
54 | blk.4.attn_output.weight | 0xa28eece0 | 0x880000 |
55 | blk.4.attn_q.weight | 0xa316ece0 | 0x690000 |
56 | blk.4.attn_q_norm.weight | 0xa37fece0 | 0x200 |
57 | blk.4.attn_v.weight | 0xa37feee0 | 0x200000 |
58 | blk.4.ffn_down_exps.weight | 0xa39feee0 | 0xcc00000 |
59 | blk.4.ffn_gate_exps.weight | 0xb05feee0 | 0x9d80000 |
60 | blk.4.ffn_gate_inp.weight | 0xba37eee0 | 0x100000 |
61 | blk.4.ffn_norm.weight | 0xba47eee0 | 0x2000 |
62 | blk.4.ffn_up_exps.weight | 0xba480ee0 | 0x9d80000 |
63 | blk.5.attn_k.weight | 0xc4200ee0 | 0xd2000 |
64 | blk.5.attn_k_norm.weight | 0xc42d2ee0 | 0x200 |
65 | blk.5.attn_norm.weight | 0xc42d30e0 | 0x2000 |
66 | blk.5.attn_output.weight | 0xc42d50e0 | 0x880000 |
67 | blk.5.attn_q.weight | 0xc4b550e0 | 0x690000 |
68 | blk.5.attn_q_norm.weight | 0xc51e50e0 | 0x200 |
69 | blk.5.attn_v.weight | 0xc51e52e0 | 0x200000 |
70 | blk.5.ffn_down_exps.weight | 0xc53e52e0 | 0xcc00000 |
71 | blk.5.ffn_gate_exps.weight | 0xd1fe52e0 | 0x9d80000 |
72 | blk.5.ffn_gate_inp.weight | 0xdbd652e0 | 0x100000 |
73 | blk.5.ffn_norm.weight | 0xdbe652e0 | 0x2000 |
74 | blk.5.ffn_up_exps.weight | 0xdbe672e0 | 0x9d80000 |
75 | blk.6.attn_k.weight | 0xe5be72e0 | 0xd2000 |
76 | blk.6.attn_k_norm.weight | 0xe5cb92e0 | 0x200 |
77 | blk.6.attn_norm.weight | 0xe5cb94e0 | 0x2000 |
78 | blk.6.attn_output.weight | 0xe5cbb4e0 | 0x880000 |
79 | blk.6.attn_q.weight | 0xe653b4e0 | 0x690000 |
80 | blk.6.attn_q_norm.weight | 0xe6bcb4e0 | 0x200 |
81 | blk.6.attn_v.weight | 0xe6bcb6e0 | 0x200000 |
82 | blk.6.ffn_down_exps.weight | 0xe6dcb6e0 | 0xcc00000 |
83 | blk.6.ffn_gate_exps.weight | 0xf39cb6e0 | 0x9d80000 |
84 | blk.6.ffn_gate_inp.weight | 0xfd74b6e0 | 0x100000 |
85 | blk.6.ffn_norm.weight | 0xfd84b6e0 | 0x2000 |
86 | blk.6.ffn_up_exps.weight | 0xfd84d6e0 | 0x9d80000 |
87 | blk.7.attn_k.weight | 0x1075cd6e0 | 0xd2000 |
88 | blk.7.attn_k_norm.weight | 0x10769f6e0 | 0x200 |
89 | blk.7.attn_norm.weight | 0x10769f8e0 | 0x2000 |
90 | blk.7.attn_output.weight | 0x1076a18e0 | 0x880000 |
91 | blk.7.attn_q.weight | 0x107f218e0 | 0x690000 |
92 | blk.7.attn_q_norm.weight | 0x1085b18e0 | 0x200 |
93 | blk.7.attn_v.weight | 0x1085b1ae0 | 0x200000 |
94 | blk.7.ffn_down_exps.weight | 0x1087b1ae0 | 0xcc00000 |
95 | blk.7.ffn_gate_exps.weight | 0x1153b1ae0 | 0x9d80000 |
96 | blk.7.ffn_gate_inp.weight | 0x11f131ae0 | 0x100000 |
97 | blk.7.ffn_norm.weight | 0x11f231ae0 | 0x2000 |
98 | blk.7.ffn_up_exps.weight | 0x11f233ae0 | 0x9d80000 |
99 | blk.8.attn_k.weight | 0x128fb3ae0 | 0xd2000 |
100 | blk.8.attn_k_norm.weight | 0x129085ae0 | 0x200 |
101 | blk.8.attn_norm.weight | 0x129085ce0 | 0x2000 |
102 | blk.8.attn_output.weight | 0x129087ce0 | 0x880000 |
103 | blk.8.attn_q.weight | 0x129907ce0 | 0x690000 |
104 | blk.8.attn_q_norm.weight | 0x129f97ce0 | 0x200 |
105 | blk.8.attn_v.weight | 0x129f97ee0 | 0x200000 |
106 | blk.8.ffn_down_exps.weight | 0x12a197ee0 | 0xcc00000 |
107 | blk.8.ffn_gate_exps.weight | 0x136d97ee0 | 0x9d80000 |
108 | blk.8.ffn_gate_inp.weight | 0x140b17ee0 | 0x100000 |
109 | blk.8.ffn_norm.weight | 0x140c17ee0 | 0x2000 |
110 | blk.8.ffn_up_exps.weight | 0x140c19ee0 | 0x9d80000 |
111 | blk.9.attn_k.weight | 0x14a999ee0 | 0xd2000 |
112 | blk.9.attn_k_norm.weight | 0x14aa6bee0 | 0x200 |
113 | blk.9.attn_norm.weight | 0x14aa6c0e0 | 0x2000 |
114 | blk.9.attn_output.weight | 0x14aa6e0e0 | 0x880000 |
115 | blk.9.attn_q.weight | 0x14b2ee0e0 | 0x690000 |
116 | blk.9.attn_q_norm.weight | 0x14b97e0e0 | 0x200 |
117 | blk.9.attn_v.weight | 0x14b97e2e0 | 0x200000 |
118 | blk.9.ffn_down_exps.weight | 0x14bb7e2e0 | 0xcc00000 |
119 | blk.9.ffn_gate_exps.weight | 0x15877e2e0 | 0x9d80000 |
120 | blk.9.ffn_gate_inp.weight | 0x1624fe2e0 | 0x100000 |
121 | blk.9.ffn_norm.weight | 0x1625fe2e0 | 0x2000 |
122 | blk.9.ffn_up_exps.weight | 0x1626002e0 | 0x9d80000 |
123 | blk.10.attn_k.weight | 0x16c3802e0 | 0xd2000 |
124 | blk.10.attn_k_norm.weight | 0x16c4522e0 | 0x200 |
125 | blk.10.attn_norm.weight | 0x16c4524e0 | 0x2000 |
126 | blk.10.attn_output.weight | 0x16c4544e0 | 0x880000 |
127 | blk.10.attn_q.weight | 0x16ccd44e0 | 0x690000 |
128 | blk.10.attn_q_norm.weight | 0x16d3644e0 | 0x200 |
129 | blk.10.attn_v.weight | 0x16d3646e0 | 0x200000 |
130 | blk.10.ffn_down_exps.weight | 0x16d5646e0 | 0xcc00000 |
131 | blk.10.ffn_gate_exps.weight | 0x17a1646e0 | 0x9d80000 |
132 | blk.10.ffn_gate_inp.weight | 0x183ee46e0 | 0x100000 |
133 | blk.10.ffn_norm.weight | 0x183fe46e0 | 0x2000 |
134 | blk.10.ffn_up_exps.weight | 0x183fe66e0 | 0x9d80000 |
135 | blk.11.attn_k.weight | 0x18dd666e0 | 0xd2000 |
136 | blk.11.attn_k_norm.weight | 0x18de386e0 | 0x200 |
137 | blk.11.attn_norm.weight | 0x18de388e0 | 0x2000 |
138 | blk.11.attn_output.weight | 0x18de3a8e0 | 0x880000 |
139 | blk.11.attn_q.weight | 0x18e6ba8e0 | 0x690000 |
140 | blk.11.attn_q_norm.weight | 0x18ed4a8e0 | 0x200 |
141 | blk.11.attn_v.weight | 0x18ed4aae0 | 0x200000 |
142 | blk.11.ffn_down_exps.weight | 0x18ef4aae0 | 0xcc00000 |
143 | blk.11.ffn_gate_exps.weight | 0x19bb4aae0 | 0x9d80000 |
144 | blk.11.ffn_gate_inp.weight | 0x1a58caae0 | 0x100000 |
145 | blk.11.ffn_norm.weight | 0x1a59caae0 | 0x2000 |
146 | blk.11.ffn_up_exps.weight | 0x1a59ccae0 | 0x9d80000 |
147 | blk.12.attn_k.weight | 0x1af74cae0 | 0xd2000 |
148 | blk.12.attn_k_norm.weight | 0x1af81eae0 | 0x200 |
149 | blk.12.attn_norm.weight | 0x1af81ece0 | 0x2000 |
150 | blk.12.attn_output.weight | 0x1af820ce0 | 0x880000 |
151 | blk.12.attn_q.weight | 0x1b00a0ce0 | 0x690000 |
152 | blk.12.attn_q_norm.weight | 0x1b0730ce0 | 0x200 |
153 | blk.12.attn_v.weight | 0x1b0730ee0 | 0x200000 |
154 | blk.12.ffn_down_exps.weight | 0x1b0930ee0 | 0xcc00000 |
155 | blk.12.ffn_gate_exps.weight | 0x1bd530ee0 | 0x9d80000 |
156 | blk.12.ffn_gate_inp.weight | 0x1c72b0ee0 | 0x100000 |
157 | blk.12.ffn_norm.weight | 0x1c73b0ee0 | 0x2000 |
158 | blk.12.ffn_up_exps.weight | 0x1c73b2ee0 | 0x9d80000 |
159 | blk.13.attn_k.weight | 0x1d1132ee0 | 0xd2000 |
160 | blk.13.attn_k_norm.weight | 0x1d1204ee0 | 0x200 |
161 | blk.13.attn_norm.weight | 0x1d12050e0 | 0x2000 |
162 | blk.13.attn_output.weight | 0x1d12070e0 | 0x880000 |
163 | blk.13.attn_q.weight | 0x1d1a870e0 | 0x690000 |
164 | blk.13.attn_q_norm.weight | 0x1d21170e0 | 0x200 |
165 | blk.13.attn_v.weight | 0x1d21172e0 | 0x200000 |
166 | blk.13.ffn_down_exps.weight | 0x1d23172e0 | 0xcc00000 |
167 | blk.13.ffn_gate_exps.weight | 0x1def172e0 | 0x9d80000 |
168 | blk.13.ffn_gate_inp.weight | 0x1e8c972e0 | 0x100000 |
169 | blk.13.ffn_norm.weight | 0x1e8d972e0 | 0x2000 |
170 | blk.13.ffn_up_exps.weight | 0x1e8d992e0 | 0x9d80000 |
171 | blk.14.attn_k.weight | 0x1f2b192e0 | 0xd2000 |
172 | blk.14.attn_k_norm.weight | 0x1f2beb2e0 | 0x200 |
173 | blk.14.attn_norm.weight | 0x1f2beb4e0 | 0x2000 |
174 | blk.14.attn_output.weight | 0x1f2bed4e0 | 0x880000 |
175 | blk.14.attn_q.weight | 0x1f346d4e0 | 0x690000 |
176 | blk.14.attn_q_norm.weight | 0x1f3afd4e0 | 0x200 |
177 | blk.14.attn_v.weight | 0x1f3afd6e0 | 0x200000 |
178 | blk.14.ffn_down_exps.weight | 0x1f3cfd6e0 | 0xcc00000 |
179 | blk.14.ffn_gate_exps.weight | 0x2008fd6e0 | 0x9d80000 |
180 | blk.14.ffn_gate_inp.weight | 0x20a67d6e0 | 0x100000 |
181 | blk.14.ffn_norm.weight | 0x20a77d6e0 | 0x2000 |
182 | blk.14.ffn_up_exps.weight | 0x20a77f6e0 | 0x9d80000 |
183 | blk.15.attn_k.weight | 0x2144ff6e0 | 0xd2000 |
184 | blk.15.attn_k_norm.weight | 0x2145d16e0 | 0x200 |
185 | blk.15.attn_norm.weight | 0x2145d18e0 | 0x2000 |
186 | blk.15.attn_output.weight | 0x2145d38e0 | 0x880000 |
187 | blk.15.attn_q.weight | 0x214e538e0 | 0x690000 |
188 | blk.15.attn_q_norm.weight | 0x2154e38e0 | 0x200 |
189 | blk.15.attn_v.weight | 0x2154e3ae0 | 0x200000 |
190 | blk.15.ffn_down_exps.weight | 0x2156e3ae0 | 0xcc00000 |
191 | blk.15.ffn_gate_exps.weight | 0x2222e3ae0 | 0x9d80000 |
192 | blk.15.ffn_gate_inp.weight | 0x22c063ae0 | 0x100000 |
193 | blk.15.ffn_norm.weight | 0x22c163ae0 | 0x2000 |
194 | blk.15.ffn_up_exps.weight | 0x22c165ae0 | 0x9d80000 |
195 | blk.16.attn_k.weight | 0x235ee5ae0 | 0xd2000 |
196 | blk.16.attn_k_norm.weight | 0x235fb7ae0 | 0x200 |
197 | blk.16.attn_norm.weight | 0x235fb7ce0 | 0x2000 |
198 | blk.16.attn_output.weight | 0x235fb9ce0 | 0x880000 |
199 | blk.16.attn_q.weight | 0x236839ce0 | 0x690000 |
200 | blk.16.attn_q_norm.weight | 0x236ec9ce0 | 0x200 |
201 | blk.16.attn_v.weight | 0x236ec9ee0 | 0x200000 |
202 | blk.16.ffn_down_exps.weight | 0x2370c9ee0 | 0xcc00000 |
203 | blk.16.ffn_gate_exps.weight | 0x243cc9ee0 | 0x9d80000 |
204 | blk.16.ffn_gate_inp.weight | 0x24da49ee0 | 0x100000 |
205 | blk.16.ffn_norm.weight | 0x24db49ee0 | 0x2000 |
206 | blk.16.ffn_up_exps.weight | 0x24db4bee0 | 0x9d80000 |
207 | blk.17.attn_k.weight | 0x2578cbee0 | 0xd2000 |
208 | blk.17.attn_k_norm.weight | 0x25799dee0 | 0x200 |
209 | blk.17.attn_norm.weight | 0x25799e0e0 | 0x2000 |
210 | blk.17.attn_output.weight | 0x2579a00e0 | 0x880000 |
211 | blk.17.attn_q.weight | 0x2582200e0 | 0x690000 |
212 | blk.17.attn_q_norm.weight | 0x2588b00e0 | 0x200 |
213 | blk.17.attn_v.weight | 0x2588b02e0 | 0x200000 |
214 | blk.17.ffn_down_exps.weight | 0x258ab02e0 | 0xcc00000 |
215 | blk.17.ffn_gate_exps.weight | 0x2656b02e0 | 0x9d80000 |
216 | blk.17.ffn_gate_inp.weight | 0x26f4302e0 | 0x100000 |
217 | blk.17.ffn_norm.weight | 0x26f5302e0 | 0x2000 |
218 | blk.17.ffn_up_exps.weight | 0x26f5322e0 | 0x9d80000 |
219 | blk.18.attn_k.weight | 0x2792b22e0 | 0xd2000 |
220 | blk.18.attn_k_norm.weight | 0x2793842e0 | 0x200 |
221 | blk.18.attn_norm.weight | 0x2793844e0 | 0x2000 |
222 | blk.18.attn_output.weight | 0x2793864e0 | 0x880000 |
223 | blk.18.attn_q.weight | 0x279c064e0 | 0x690000 |
224 | blk.18.attn_q_norm.weight | 0x27a2964e0 | 0x200 |
225 | blk.18.attn_v.weight | 0x27a2966e0 | 0x200000 |
226 | blk.18.ffn_down_exps.weight | 0x27a4966e0 | 0xcc00000 |
227 | blk.18.ffn_gate_exps.weight | 0x2870966e0 | 0xcc00000 |
228 | blk.18.ffn_gate_inp.weight | 0x293c966e0 | 0x100000 |
229 | blk.18.ffn_norm.weight | 0x293d966e0 | 0x2000 |
230 | blk.18.ffn_up_exps.weight | 0x293d986e0 | 0xcc00000 |
231 | blk.19.attn_k.weight | 0x2a09986e0 | 0xd2000 |
232 | blk.19.attn_k_norm.weight | 0x2a0a6a6e0 | 0x200 |
233 | blk.19.attn_norm.weight | 0x2a0a6a8e0 | 0x2000 |
234 | blk.19.attn_output.weight | 0x2a0a6c8e0 | 0x880000 |
235 | blk.19.attn_q.weight | 0x2a12ec8e0 | 0x690000 |
236 | blk.19.attn_q_norm.weight | 0x2a197c8e0 | 0x200 |
237 | blk.19.attn_v.weight | 0x2a197cae0 | 0x200000 |
238 | blk.19.ffn_down_exps.weight | 0x2a1b7cae0 | 0xcc00000 |
239 | blk.19.ffn_gate_exps.weight | 0x2ae77cae0 | 0x9d80000 |
240 | blk.19.ffn_gate_inp.weight | 0x2b84fcae0 | 0x100000 |
241 | blk.19.ffn_norm.weight | 0x2b85fcae0 | 0x2000 |
242 | blk.19.ffn_up_exps.weight | 0x2b85feae0 | 0x9d80000 |
243 | blk.20.attn_k.weight | 0x2c237eae0 | 0xd2000 |
244 | blk.20.attn_k_norm.weight | 0x2c2450ae0 | 0x200 |
245 | blk.20.attn_norm.weight | 0x2c2450ce0 | 0x2000 |
246 | blk.20.attn_output.weight | 0x2c2452ce0 | 0x880000 |
247 | blk.20.attn_q.weight | 0x2c2cd2ce0 | 0x690000 |
248 | blk.20.attn_q_norm.weight | 0x2c3362ce0 | 0x200 |
249 | blk.20.attn_v.weight | 0x2c3362ee0 | 0x200000 |
250 | blk.20.ffn_down_exps.weight | 0x2c3562ee0 | 0xcc00000 |
251 | blk.20.ffn_gate_exps.weight | 0x2d0162ee0 | 0x9d80000 |
252 | blk.20.ffn_gate_inp.weight | 0x2d9ee2ee0 | 0x100000 |
253 | blk.20.ffn_norm.weight | 0x2d9fe2ee0 | 0x2000 |
254 | blk.20.ffn_up_exps.weight | 0x2d9fe4ee0 | 0x9d80000 |
255 | blk.21.attn_k.weight | 0x2e3d64ee0 | 0xd2000 |
256 | blk.21.attn_k_norm.weight | 0x2e3e36ee0 | 0x200 |
257 | blk.21.attn_norm.weight | 0x2e3e370e0 | 0x2000 |
258 | blk.21.attn_output.weight | 0x2e3e390e0 | 0x880000 |
259 | blk.21.attn_q.weight | 0x2e46b90e0 | 0x690000 |
260 | blk.21.attn_q_norm.weight | 0x2e4d490e0 | 0x200 |
261 | blk.21.attn_v.weight | 0x2e4d492e0 | 0x200000 |
262 | blk.21.ffn_down_exps.weight | 0x2e4f492e0 | 0xcc00000 |
263 | blk.21.ffn_gate_exps.weight | 0x2f1b492e0 | 0x9d80000 |
264 | blk.21.ffn_gate_inp.weight | 0x2fb8c92e0 | 0x100000 |
265 | blk.21.ffn_norm.weight | 0x2fb9c92e0 | 0x2000 |
266 | blk.21.ffn_up_exps.weight | 0x2fb9cb2e0 | 0x9d80000 |
267 | blk.22.attn_k.weight | 0x30574b2e0 | 0xd2000 |
268 | blk.22.attn_k_norm.weight | 0x30581d2e0 | 0x200 |
269 | blk.22.attn_norm.weight | 0x30581d4e0 | 0x2000 |
270 | blk.22.attn_output.weight | 0x30581f4e0 | 0x880000 |
271 | blk.22.attn_q.weight | 0x30609f4e0 | 0x690000 |
272 | blk.22.attn_q_norm.weight | 0x30672f4e0 | 0x200 |
273 | blk.22.attn_v.weight | 0x30672f6e0 | 0x200000 |
274 | blk.22.ffn_down_exps.weight | 0x30692f6e0 | 0xcc00000 |
275 | blk.22.ffn_gate_exps.weight | 0x31352f6e0 | 0x9d80000 |
276 | blk.22.ffn_gate_inp.weight | 0x31d2af6e0 | 0x100000 |
277 | blk.22.ffn_norm.weight | 0x31d3af6e0 | 0x2000 |
278 | blk.22.ffn_up_exps.weight | 0x31d3b16e0 | 0x9d80000 |
279 | blk.23.attn_k.weight | 0x3271316e0 | 0xd2000 |
280 | blk.23.attn_k_norm.weight | 0x3272036e0 | 0x200 |
281 | blk.23.attn_norm.weight | 0x3272038e0 | 0x2000 |
282 | blk.23.attn_output.weight | 0x3272058e0 | 0x880000 |
283 | blk.23.attn_q.weight | 0x327a858e0 | 0x690000 |
284 | blk.23.attn_q_norm.weight | 0x3281158e0 | 0x200 |
285 | blk.23.attn_v.weight | 0x328115ae0 | 0x200000 |
286 | blk.23.ffn_down_exps.weight | 0x328315ae0 | 0xcc00000 |
287 | blk.23.ffn_gate_exps.weight | 0x334f15ae0 | 0x9d80000 |
288 | blk.23.ffn_gate_inp.weight | 0x33ec95ae0 | 0x100000 |
289 | blk.23.ffn_norm.weight | 0x33ed95ae0 | 0x2000 |
290 | blk.23.ffn_up_exps.weight | 0x33ed97ae0 | 0x9d80000 |
291 | blk.24.attn_k.weight | 0x348b17ae0 | 0x110000 |
292 | blk.24.attn_k_norm.weight | 0x348c27ae0 | 0x200 |
293 | blk.24.attn_norm.weight | 0x348c27ce0 | 0x2000 |
294 | blk.24.attn_output.weight | 0x348c29ce0 | 0x880000 |
295 | blk.24.attn_q.weight | 0x3494a9ce0 | 0x880000 |
296 | blk.24.attn_q_norm.weight | 0x349d29ce0 | 0x200 |
297 | blk.24.attn_v.weight | 0x349d29ee0 | 0x200000 |
298 | blk.24.ffn_down_exps.weight | 0x349f29ee0 | 0xcc00000 |
299 | blk.24.ffn_gate_exps.weight | 0x356b29ee0 | 0x9d80000 |
300 | blk.24.ffn_gate_inp.weight | 0x3608a9ee0 | 0x100000 |
301 | blk.24.ffn_norm.weight | 0x3609a9ee0 | 0x2000 |
302 | blk.24.ffn_up_exps.weight | 0x3609abee0 | 0x9d80000 |
303 | blk.25.attn_k.weight | 0x36a72bee0 | 0x110000 |
304 | blk.25.attn_k_norm.weight | 0x36a83bee0 | 0x200 |
305 | blk.25.attn_norm.weight | 0x36a83c0e0 | 0x2000 |
306 | blk.25.attn_output.weight | 0x36a83e0e0 | 0x880000 |
307 | blk.25.attn_q.weight | 0x36b0be0e0 | 0x880000 |
308 | blk.25.attn_q_norm.weight | 0x36b93e0e0 | 0x200 |
309 | blk.25.attn_v.weight | 0x36b93e2e0 | 0x200000 |
310 | blk.25.ffn_down_exps.weight | 0x36bb3e2e0 | 0xcc00000 |
311 | blk.25.ffn_gate_exps.weight | 0x37873e2e0 | 0xcc00000 |
312 | blk.25.ffn_gate_inp.weight | 0x38533e2e0 | 0x100000 |
313 | blk.25.ffn_norm.weight | 0x38543e2e0 | 0x2000 |
314 | blk.25.ffn_up_exps.weight | 0x3854402e0 | 0xcc00000 |
315 | blk.26.attn_k.weight | 0x3920402e0 | 0x110000 |
316 | blk.26.attn_k_norm.weight | 0x3921502e0 | 0x200 |
317 | blk.26.attn_norm.weight | 0x3921504e0 | 0x2000 |
318 | blk.26.attn_output.weight | 0x3921524e0 | 0x880000 |
319 | blk.26.attn_q.weight | 0x3929d24e0 | 0x880000 |
320 | blk.26.attn_q_norm.weight | 0x3932524e0 | 0x200 |
321 | blk.26.attn_v.weight | 0x3932526e0 | 0x200000 |
322 | blk.26.ffn_down_exps.weight | 0x3934526e0 | 0xcc00000 |
323 | blk.26.ffn_gate_exps.weight | 0x3a00526e0 | 0xcc00000 |
324 | blk.26.ffn_gate_inp.weight | 0x3acc526e0 | 0x100000 |
325 | blk.26.ffn_norm.weight | 0x3acd526e0 | 0x2000 |
326 | blk.26.ffn_up_exps.weight | 0x3acd546e0 | 0xcc00000 |
327 | blk.27.attn_k.weight | 0x3b99546e0 | 0x110000 |
328 | blk.27.attn_k_norm.weight | 0x3b9a646e0 | 0x200 |
329 | blk.27.attn_norm.weight | 0x3b9a648e0 | 0x2000 |
330 | blk.27.attn_output.weight | 0x3b9a668e0 | 0x880000 |
331 | blk.27.attn_q.weight | 0x3ba2e68e0 | 0x880000 |
332 | blk.27.attn_q_norm.weight | 0x3bab668e0 | 0x200 |
333 | blk.27.attn_v.weight | 0x3bab66ae0 | 0x200000 |
334 | blk.27.ffn_down_exps.weight | 0x3bad66ae0 | 0xcc00000 |
335 | blk.27.ffn_gate_exps.weight | 0x3c7966ae0 | 0xcc00000 |
336 | blk.27.ffn_gate_inp.weight | 0x3d4566ae0 | 0x100000 |
337 | blk.27.ffn_norm.weight | 0x3d4666ae0 | 0x2000 |
338 | blk.27.ffn_up_exps.weight | 0x3d4668ae0 | 0xcc00000 |
339 | blk.28.attn_k.weight | 0x3e1268ae0 | 0x110000 |
340 | blk.28.attn_k_norm.weight | 0x3e1378ae0 | 0x200 |
341 | blk.28.attn_norm.weight | 0x3e1378ce0 | 0x2000 |
342 | blk.28.attn_output.weight | 0x3e137ace0 | 0x880000 |
343 | blk.28.attn_q.weight | 0x3e1bface0 | 0x880000 |
344 | blk.28.attn_q_norm.weight | 0x3e247ace0 | 0x200 |
345 | blk.28.attn_v.weight | 0x3e247aee0 | 0x200000 |
346 | blk.28.ffn_down_exps.weight | 0x3e267aee0 | 0xcc00000 |
347 | blk.28.ffn_gate_exps.weight | 0x3ef27aee0 | 0xcc00000 |
348 | blk.28.ffn_gate_inp.weight | 0x3fbe7aee0 | 0x100000 |
349 | blk.28.ffn_norm.weight | 0x3fbf7aee0 | 0x2000 |
350 | blk.28.ffn_up_exps.weight | 0x3fbf7cee0 | 0xcc00000 |
351 | blk.29.attn_k.weight | 0x408b7cee0 | 0x110000 |
352 | blk.29.attn_k_norm.weight | 0x408c8cee0 | 0x200 |
353 | blk.29.attn_norm.weight | 0x408c8d0e0 | 0x2000 |
354 | blk.29.attn_output.weight | 0x408c8f0e0 | 0x880000 |
355 | blk.29.attn_q.weight | 0x40950f0e0 | 0x880000 |
356 | blk.29.attn_q_norm.weight | 0x409d8f0e0 | 0x200 |
357 | blk.29.attn_v.weight | 0x409d8f2e0 | 0x200000 |
358 | blk.29.ffn_down_exps.weight | 0x409f8f2e0 | 0xcc00000 |
359 | blk.29.ffn_gate_exps.weight | 0x416b8f2e0 | 0xcc00000 |
360 | blk.29.ffn_gate_inp.weight | 0x42378f2e0 | 0x100000 |
361 | blk.29.ffn_norm.weight | 0x42388f2e0 | 0x2000 |
362 | blk.29.ffn_up_exps.weight | 0x4238912e0 | 0xcc00000 |
363 | blk.30.attn_k.weight | 0x4304912e0 | 0x110000 |
364 | blk.30.attn_k_norm.weight | 0x4305a12e0 | 0x200 |
365 | blk.30.attn_norm.weight | 0x4305a14e0 | 0x2000 |
366 | blk.30.attn_output.weight | 0x4305a34e0 | 0x880000 |
367 | blk.30.attn_q.weight | 0x430e234e0 | 0x880000 |
368 | blk.30.attn_q_norm.weight | 0x4316a34e0 | 0x200 |
369 | blk.30.attn_v.weight | 0x4316a36e0 | 0x200000 |
370 | blk.30.ffn_down_exps.weight | 0x4318a36e0 | 0xcc00000 |
371 | blk.30.ffn_gate_exps.weight | 0x43e4a36e0 | 0xcc00000 |
372 | blk.30.ffn_gate_inp.weight | 0x44b0a36e0 | 0x100000 |
373 | blk.30.ffn_norm.weight | 0x44b1a36e0 | 0x2000 |
374 | blk.30.ffn_up_exps.weight | 0x44b1a56e0 | 0xcc00000 |
375 | blk.31.attn_k.weight | 0x457da56e0 | 0x110000 |
376 | blk.31.attn_k_norm.weight | 0x457eb56e0 | 0x200 |
377 | blk.31.attn_norm.weight | 0x457eb58e0 | 0x2000 |
378 | blk.31.attn_output.weight | 0x457eb78e0 | 0x880000 |
379 | blk.31.attn_q.weight | 0x4587378e0 | 0x880000 |
380 | blk.31.attn_q_norm.weight | 0x458fb78e0 | 0x200 |
381 | blk.31.attn_v.weight | 0x458fb7ae0 | 0x200000 |
382 | blk.31.ffn_down_exps.weight | 0x4591b7ae0 | 0xcc00000 |
383 | blk.31.ffn_gate_exps.weight | 0x465db7ae0 | 0xcc00000 |
384 | blk.31.ffn_gate_inp.weight | 0x4729b7ae0 | 0x100000 |
385 | blk.31.ffn_norm.weight | 0x472ab7ae0 | 0x2000 |
386 | blk.31.ffn_up_exps.weight | 0x472ab9ae0 | 0xcc00000 |
387 | blk.32.attn_k.weight | 0x47f6b9ae0 | 0x110000 |
388 | blk.32.attn_k_norm.weight | 0x47f7c9ae0 | 0x200 |
389 | blk.32.attn_norm.weight | 0x47f7c9ce0 | 0x2000 |
390 | blk.32.attn_output.weight | 0x47f7cbce0 | 0x880000 |
391 | blk.32.attn_q.weight | 0x48004bce0 | 0x880000 |
392 | blk.32.attn_q_norm.weight | 0x4808cbce0 | 0x200 |
393 | blk.32.attn_v.weight | 0x4808cbee0 | 0x200000 |
394 | blk.32.ffn_down_exps.weight | 0x480acbee0 | 0xcc00000 |
395 | blk.32.ffn_gate_exps.weight | 0x48d6cbee0 | 0xcc00000 |
396 | blk.32.ffn_gate_inp.weight | 0x49a2cbee0 | 0x100000 |
397 | blk.32.ffn_norm.weight | 0x49a3cbee0 | 0x2000 |
398 | blk.32.ffn_up_exps.weight | 0x49a3cdee0 | 0xcc00000 |
399 | blk.33.attn_k.weight | 0x4a6fcdee0 | 0x110000 |
400 | blk.33.attn_k_norm.weight | 0x4a70ddee0 | 0x200 |
401 | blk.33.attn_norm.weight | 0x4a70de0e0 | 0x2000 |
402 | blk.33.attn_output.weight | 0x4a70e00e0 | 0x880000 |
403 | blk.33.attn_q.weight | 0x4a79600e0 | 0x880000 |
404 | blk.33.attn_q_norm.weight | 0x4a81e00e0 | 0x200 |
405 | blk.33.attn_v.weight | 0x4a81e02e0 | 0x200000 |
406 | blk.33.ffn_down_exps.weight | 0x4a83e02e0 | 0xcc00000 |
407 | blk.33.ffn_gate_exps.weight | 0x4b4fe02e0 | 0xcc00000 |
408 | blk.33.ffn_gate_inp.weight | 0x4c1be02e0 | 0x100000 |
409 | blk.33.ffn_norm.weight | 0x4c1ce02e0 | 0x2000 |
410 | blk.33.ffn_up_exps.weight | 0x4c1ce22e0 | 0xcc00000 |
411 | blk.34.attn_k.weight | 0x4ce8e22e0 | 0x110000 |
412 | blk.34.attn_k_norm.weight | 0x4ce9f22e0 | 0x200 |
413 | blk.34.attn_norm.weight | 0x4ce9f24e0 | 0x2000 |
414 | blk.34.attn_output.weight | 0x4ce9f44e0 | 0x880000 |
415 | blk.34.attn_q.weight | 0x4cf2744e0 | 0x880000 |
416 | blk.34.attn_q_norm.weight | 0x4cfaf44e0 | 0x200 |
417 | blk.34.attn_v.weight | 0x4cfaf46e0 | 0x200000 |
418 | blk.34.ffn_down_exps.weight | 0x4cfcf46e0 | 0xcc00000 |
419 | blk.34.ffn_gate_exps.weight | 0x4dc8f46e0 | 0xcc00000 |
420 | blk.34.ffn_gate_inp.weight | 0x4e94f46e0 | 0x100000 |
421 | blk.34.ffn_norm.weight | 0x4e95f46e0 | 0x2000 |
422 | blk.34.ffn_up_exps.weight | 0x4e95f66e0 | 0xcc00000 |
423 | blk.35.attn_k.weight | 0x4f61f66e0 | 0x110000 |
424 | blk.35.attn_k_norm.weight | 0x4f63066e0 | 0x200 |
425 | blk.35.attn_norm.weight | 0x4f63068e0 | 0x2000 |
426 | blk.35.attn_output.weight | 0x4f63088e0 | 0x880000 |
427 | blk.35.attn_q.weight | 0x4f6b888e0 | 0x880000 |
428 | blk.35.attn_q_norm.weight | 0x4f74088e0 | 0x200 |
429 | blk.35.attn_v.weight | 0x4f7408ae0 | 0x200000 |
430 | blk.35.ffn_down_exps.weight | 0x4f7608ae0 | 0xcc00000 |
431 | blk.35.ffn_gate_exps.weight | 0x504208ae0 | 0xcc00000 |
432 | blk.35.ffn_gate_inp.weight | 0x510e08ae0 | 0x100000 |
433 | blk.35.ffn_norm.weight | 0x510f08ae0 | 0x2000 |
434 | blk.35.ffn_up_exps.weight | 0x510f0aae0 | 0xcc00000 |
435 | blk.36.attn_k.weight | 0x51db0aae0 | 0x110000 |
436 | blk.36.attn_k_norm.weight | 0x51dc1aae0 | 0x200 |
437 | blk.36.attn_norm.weight | 0x51dc1ace0 | 0x2000 |
438 | blk.36.attn_output.weight | 0x51dc1cce0 | 0x880000 |
439 | blk.36.attn_q.weight | 0x51e49cce0 | 0x880000 |
440 | blk.36.attn_q_norm.weight | 0x51ed1cce0 | 0x200 |
441 | blk.36.attn_v.weight | 0x51ed1cee0 | 0x200000 |
442 | blk.36.ffn_down_exps.weight | 0x51ef1cee0 | 0xcc00000 |
443 | blk.36.ffn_gate_exps.weight | 0x52bb1cee0 | 0xcc00000 |
444 | blk.36.ffn_gate_inp.weight | 0x53871cee0 | 0x100000 |
445 | blk.36.ffn_norm.weight | 0x53881cee0 | 0x2000 |
446 | blk.36.ffn_up_exps.weight | 0x53881eee0 | 0xcc00000 |
447 | blk.37.attn_k.weight | 0x54541eee0 | 0x110000 |
448 | blk.37.attn_k_norm.weight | 0x54552eee0 | 0x200 |
449 | blk.37.attn_norm.weight | 0x54552f0e0 | 0x2000 |
450 | blk.37.attn_output.weight | 0x5455310e0 | 0x880000 |
451 | blk.37.attn_q.weight | 0x545db10e0 | 0x880000 |
452 | blk.37.attn_q_norm.weight | 0x5466310e0 | 0x200 |
453 | blk.37.attn_v.weight | 0x5466312e0 | 0x200000 |
454 | blk.37.ffn_down_exps.weight | 0x5468312e0 | 0xcc00000 |
455 | blk.37.ffn_gate_exps.weight | 0x5534312e0 | 0xcc00000 |
456 | blk.37.ffn_gate_inp.weight | 0x5600312e0 | 0x100000 |
457 | blk.37.ffn_norm.weight | 0x5601312e0 | 0x2000 |
458 | blk.37.ffn_up_exps.weight | 0x5601332e0 | 0xcc00000 |
459 | blk.38.attn_k.weight | 0x56cd332e0 | 0x110000 |
460 | blk.38.attn_k_norm.weight | 0x56ce432e0 | 0x200 |
461 | blk.38.attn_norm.weight | 0x56ce434e0 | 0x2000 |
462 | blk.38.attn_output.weight | 0x56ce454e0 | 0x880000 |
463 | blk.38.attn_q.weight | 0x56d6c54e0 | 0x880000 |
464 | blk.38.attn_q_norm.weight | 0x56df454e0 | 0x200 |
465 | blk.38.attn_v.weight | 0x56df456e0 | 0x200000 |
466 | blk.38.ffn_down_exps.weight | 0x56e1456e0 | 0xcc00000 |
467 | blk.38.ffn_gate_exps.weight | 0x57ad456e0 | 0xcc00000 |
468 | blk.38.ffn_gate_inp.weight | 0x5879456e0 | 0x100000 |
469 | blk.38.ffn_norm.weight | 0x587a456e0 | 0x2000 |
470 | blk.38.ffn_up_exps.weight | 0x587a476e0 | 0xcc00000 |
471 | blk.39.attn_k.weight | 0x5946476e0 | 0x110000 |
472 | blk.39.attn_k_norm.weight | 0x5947576e0 | 0x200 |
473 | blk.39.attn_norm.weight | 0x5947578e0 | 0x2000 |
474 | blk.39.attn_output.weight | 0x5947598e0 | 0x880000 |
475 | blk.39.attn_q.weight | 0x594fd98e0 | 0x880000 |
476 | blk.39.attn_q_norm.weight | 0x5958598e0 | 0x200 |
477 | blk.39.attn_v.weight | 0x595859ae0 | 0x200000 |
478 | blk.39.ffn_down_exps.weight | 0x595a59ae0 | 0xcc00000 |
479 | blk.39.ffn_gate_exps.weight | 0x5a2659ae0 | 0xcc00000 |
480 | blk.39.ffn_gate_inp.weight | 0x5af259ae0 | 0x100000 |
481 | blk.39.ffn_norm.weight | 0x5af359ae0 | 0x2000 |
482 | blk.39.ffn_up_exps.weight | 0x5af35bae0 | 0xcc00000 |
483 | blk.40.attn_k.weight | 0x5bbf5bae0 | 0x110000 |
484 | blk.40.attn_k_norm.weight | 0x5bc06bae0 | 0x200 |
485 | blk.40.attn_norm.weight | 0x5bc06bce0 | 0x2000 |
486 | blk.40.attn_output.weight | 0x5bc06dce0 | 0x880000 |
487 | blk.40.attn_q.weight | 0x5bc8edce0 | 0x880000 |
488 | blk.40.attn_q_norm.weight | 0x5bd16dce0 | 0x200 |
489 | blk.40.attn_v.weight | 0x5bd16dee0 | 0x200000 |
490 | blk.40.ffn_down_exps.weight | 0x5bd36dee0 | 0xcc00000 |
491 | blk.40.ffn_gate_exps.weight | 0x5c9f6dee0 | 0xcc00000 |
492 | blk.40.ffn_gate_inp.weight | 0x5d6b6dee0 | 0x100000 |
493 | blk.40.ffn_norm.weight | 0x5d6c6dee0 | 0x2000 |
494 | blk.40.ffn_up_exps.weight | 0x5d6c6fee0 | 0xcc00000 |
495 | blk.41.attn_k.weight | 0x5e386fee0 | 0x110000 |
496 | blk.41.attn_k_norm.weight | 0x5e397fee0 | 0x200 |
497 | blk.41.attn_norm.weight | 0x5e39800e0 | 0x2000 |
498 | blk.41.attn_output.weight | 0x5e39820e0 | 0x880000 |
499 | blk.41.attn_q.weight | 0x5e42020e0 | 0x880000 |
500 | blk.41.attn_q_norm.weight | 0x5e4a820e0 | 0x200 |
501 | blk.41.attn_v.weight | 0x5e4a822e0 | 0x200000 |
502 | blk.41.ffn_down_exps.weight | 0x5e4c822e0 | 0xcc00000 |
503 | blk.41.ffn_gate_exps.weight | 0x5f18822e0 | 0xcc00000 |
504 | blk.41.ffn_gate_inp.weight | 0x5fe4822e0 | 0x100000 |
505 | blk.41.ffn_norm.weight | 0x5fe5822e0 | 0x2000 |
506 | blk.41.ffn_up_exps.weight | 0x5fe5842e0 | 0xcc00000 |
507 | blk.42.attn_k.weight | 0x60b1842e0 | 0x110000 |
508 | blk.42.attn_k_norm.weight | 0x60b2942e0 | 0x200 |
509 | blk.42.attn_norm.weight | 0x60b2944e0 | 0x2000 |
510 | blk.42.attn_output.weight | 0x60b2964e0 | 0x880000 |
511 | blk.42.attn_q.weight | 0x60bb164e0 | 0x880000 |
512 | blk.42.attn_q_norm.weight | 0x60c3964e0 | 0x200 |
513 | blk.42.attn_v.weight | 0x60c3966e0 | 0x200000 |
514 | blk.42.ffn_down_exps.weight | 0x60c5966e0 | 0xcc00000 |
515 | blk.42.ffn_gate_exps.weight | 0x6191966e0 | 0xcc00000 |
516 | blk.42.ffn_gate_inp.weight | 0x625d966e0 | 0x100000 |
517 | blk.42.ffn_norm.weight | 0x625e966e0 | 0x2000 |
518 | blk.42.ffn_up_exps.weight | 0x625e986e0 | 0xcc00000 |
519 | blk.43.attn_k.weight | 0x632a986e0 | 0x110000 |
520 | blk.43.attn_k_norm.weight | 0x632ba86e0 | 0x200 |
521 | blk.43.attn_norm.weight | 0x632ba88e0 | 0x2000 |
522 | blk.43.attn_output.weight | 0x632baa8e0 | 0x880000 |
523 | blk.43.attn_q.weight | 0x63342a8e0 | 0x880000 |
524 | blk.43.attn_q_norm.weight | 0x633caa8e0 | 0x200 |
525 | blk.43.attn_v.weight | 0x633caaae0 | 0x200000 |
526 | blk.43.ffn_down_exps.weight | 0x633eaaae0 | 0xcc00000 |
527 | blk.43.ffn_gate_exps.weight | 0x640aaaae0 | 0xcc00000 |
528 | blk.43.ffn_gate_inp.weight | 0x64d6aaae0 | 0x100000 |
529 | blk.43.ffn_norm.weight | 0x64d7aaae0 | 0x2000 |
530 | blk.43.ffn_up_exps.weight | 0x64d7acae0 | 0xcc00000 |
531 | blk.44.attn_k.weight | 0x65a3acae0 | 0x110000 |
532 | blk.44.attn_k_norm.weight | 0x65a4bcae0 | 0x200 |
533 | blk.44.attn_norm.weight | 0x65a4bcce0 | 0x2000 |
534 | blk.44.attn_output.weight | 0x65a4bece0 | 0x880000 |
535 | blk.44.attn_q.weight | 0x65ad3ece0 | 0x880000 |
536 | blk.44.attn_q_norm.weight | 0x65b5bece0 | 0x200 |
537 | blk.44.attn_v.weight | 0x65b5beee0 | 0x200000 |
538 | blk.44.ffn_down_exps.weight | 0x65b7beee0 | 0xcc00000 |
539 | blk.44.ffn_gate_exps.weight | 0x6683beee0 | 0xcc00000 |
540 | blk.44.ffn_gate_inp.weight | 0x674fbeee0 | 0x100000 |
541 | blk.44.ffn_norm.weight | 0x6750beee0 | 0x2000 |
542 | blk.44.ffn_up_exps.weight | 0x6750c0ee0 | 0xcc00000 |
543 | blk.45.attn_k.weight | 0x681cc0ee0 | 0x110000 |
544 | blk.45.attn_k_norm.weight | 0x681dd0ee0 | 0x200 |
545 | blk.45.attn_norm.weight | 0x681dd10e0 | 0x2000 |
546 | blk.45.attn_output.weight | 0x681dd30e0 | 0x880000 |
547 | blk.45.attn_q.weight | 0x6826530e0 | 0x880000 |
548 | blk.45.attn_q_norm.weight | 0x682ed30e0 | 0x200 |
549 | blk.45.attn_v.weight | 0x682ed32e0 | 0x200000 |
550 | blk.45.ffn_down_exps.weight | 0x6830d32e0 | 0xcc00000 |
551 | blk.45.ffn_gate_exps.weight | 0x68fcd32e0 | 0xcc00000 |
552 | blk.45.ffn_gate_inp.weight | 0x69c8d32e0 | 0x100000 |
553 | blk.45.ffn_norm.weight | 0x69c9d32e0 | 0x2000 |
554 | blk.45.ffn_up_exps.weight | 0x69c9d52e0 | 0xcc00000 |
Base Tensor Group : ~622M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
0 | output.weight | Output (W) | (~311M) 311164928 | 2048 x 151936 x 1 x 1 | Q8_0 |
1 | output_norm.weight | Output Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
2 | token_embd.weight | Token Embedding (W) | (~311M) 311164928 | 2048 x 151936 x 1 x 1 | Q3_K |
- Total elements in base: (~622M) 622331904
- Percentage of total elements: 2.13%
Block 0 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
3 | blk.0.attn_k.weight | Block 0 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
4 | blk.0.attn_k_norm.weight | Block 0 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
5 | blk.0.attn_norm.weight | Block 0 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
6 | blk.0.attn_output.weight | Block 0 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
7 | blk.0.attn_q.weight | Block 0 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
8 | blk.0.attn_q_norm.weight | Block 0 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
9 | blk.0.attn_v.weight | Block 0 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
10 | blk.0.ffn_down_exps.weight | Block 0 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
11 | blk.0.ffn_gate_exps.weight | Block 0 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
12 | blk.0.ffn_gate_inp.weight | Block 0 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
13 | blk.0.ffn_norm.weight | Block 0 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
14 | blk.0.ffn_up_exps.weight | Block 0 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.0: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 1 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
15 | blk.1.attn_k.weight | Block 1 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
16 | blk.1.attn_k_norm.weight | Block 1 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
17 | blk.1.attn_norm.weight | Block 1 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
18 | blk.1.attn_output.weight | Block 1 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
19 | blk.1.attn_q.weight | Block 1 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
20 | blk.1.attn_q_norm.weight | Block 1 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
21 | blk.1.attn_v.weight | Block 1 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
22 | blk.1.ffn_down_exps.weight | Block 1 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
23 | blk.1.ffn_gate_exps.weight | Block 1 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
24 | blk.1.ffn_gate_inp.weight | Block 1 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
25 | blk.1.ffn_norm.weight | Block 1 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
26 | blk.1.ffn_up_exps.weight | Block 1 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.1: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 2 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
27 | blk.2.attn_k.weight | Block 2 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
28 | blk.2.attn_k_norm.weight | Block 2 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
29 | blk.2.attn_norm.weight | Block 2 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
30 | blk.2.attn_output.weight | Block 2 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
31 | blk.2.attn_q.weight | Block 2 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
32 | blk.2.attn_q_norm.weight | Block 2 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
33 | blk.2.attn_v.weight | Block 2 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
34 | blk.2.ffn_down_exps.weight | Block 2 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
35 | blk.2.ffn_gate_exps.weight | Block 2 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
36 | blk.2.ffn_gate_inp.weight | Block 2 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
37 | blk.2.ffn_norm.weight | Block 2 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
38 | blk.2.ffn_up_exps.weight | Block 2 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.2: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 3 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
39 | blk.3.attn_k.weight | Block 3 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
40 | blk.3.attn_k_norm.weight | Block 3 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
41 | blk.3.attn_norm.weight | Block 3 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
42 | blk.3.attn_output.weight | Block 3 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
43 | blk.3.attn_q.weight | Block 3 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
44 | blk.3.attn_q_norm.weight | Block 3 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
45 | blk.3.attn_v.weight | Block 3 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
46 | blk.3.ffn_down_exps.weight | Block 3 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
47 | blk.3.ffn_gate_exps.weight | Block 3 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
48 | blk.3.ffn_gate_inp.weight | Block 3 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
49 | blk.3.ffn_norm.weight | Block 3 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
50 | blk.3.ffn_up_exps.weight | Block 3 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.3: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 4 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
51 | blk.4.attn_k.weight | Block 4 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
52 | blk.4.attn_k_norm.weight | Block 4 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
53 | blk.4.attn_norm.weight | Block 4 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
54 | blk.4.attn_output.weight | Block 4 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
55 | blk.4.attn_q.weight | Block 4 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
56 | blk.4.attn_q_norm.weight | Block 4 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
57 | blk.4.attn_v.weight | Block 4 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
58 | blk.4.ffn_down_exps.weight | Block 4 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
59 | blk.4.ffn_gate_exps.weight | Block 4 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
60 | blk.4.ffn_gate_inp.weight | Block 4 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
61 | blk.4.ffn_norm.weight | Block 4 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
62 | blk.4.ffn_up_exps.weight | Block 4 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.4: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 5 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
63 | blk.5.attn_k.weight | Block 5 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
64 | blk.5.attn_k_norm.weight | Block 5 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
65 | blk.5.attn_norm.weight | Block 5 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
66 | blk.5.attn_output.weight | Block 5 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
67 | blk.5.attn_q.weight | Block 5 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
68 | blk.5.attn_q_norm.weight | Block 5 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
69 | blk.5.attn_v.weight | Block 5 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
70 | blk.5.ffn_down_exps.weight | Block 5 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
71 | blk.5.ffn_gate_exps.weight | Block 5 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
72 | blk.5.ffn_gate_inp.weight | Block 5 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
73 | blk.5.ffn_norm.weight | Block 5 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
74 | blk.5.ffn_up_exps.weight | Block 5 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.5: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 6 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
75 | blk.6.attn_k.weight | Block 6 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
76 | blk.6.attn_k_norm.weight | Block 6 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
77 | blk.6.attn_norm.weight | Block 6 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
78 | blk.6.attn_output.weight | Block 6 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
79 | blk.6.attn_q.weight | Block 6 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
80 | blk.6.attn_q_norm.weight | Block 6 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
81 | blk.6.attn_v.weight | Block 6 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
82 | blk.6.ffn_down_exps.weight | Block 6 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
83 | blk.6.ffn_gate_exps.weight | Block 6 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
84 | blk.6.ffn_gate_inp.weight | Block 6 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
85 | blk.6.ffn_norm.weight | Block 6 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
86 | blk.6.ffn_up_exps.weight | Block 6 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.6: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 7 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
87 | blk.7.attn_k.weight | Block 7 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
88 | blk.7.attn_k_norm.weight | Block 7 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
89 | blk.7.attn_norm.weight | Block 7 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
90 | blk.7.attn_output.weight | Block 7 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
91 | blk.7.attn_q.weight | Block 7 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
92 | blk.7.attn_q_norm.weight | Block 7 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
93 | blk.7.attn_v.weight | Block 7 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
94 | blk.7.ffn_down_exps.weight | Block 7 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
95 | blk.7.ffn_gate_exps.weight | Block 7 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
96 | blk.7.ffn_gate_inp.weight | Block 7 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
97 | blk.7.ffn_norm.weight | Block 7 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
98 | blk.7.ffn_up_exps.weight | Block 7 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.7: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 8 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
99 | blk.8.attn_k.weight | Block 8 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
100 | blk.8.attn_k_norm.weight | Block 8 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
101 | blk.8.attn_norm.weight | Block 8 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
102 | blk.8.attn_output.weight | Block 8 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
103 | blk.8.attn_q.weight | Block 8 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
104 | blk.8.attn_q_norm.weight | Block 8 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
105 | blk.8.attn_v.weight | Block 8 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
106 | blk.8.ffn_down_exps.weight | Block 8 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
107 | blk.8.ffn_gate_exps.weight | Block 8 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
108 | blk.8.ffn_gate_inp.weight | Block 8 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
109 | blk.8.ffn_norm.weight | Block 8 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
110 | blk.8.ffn_up_exps.weight | Block 8 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.8: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 9 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
111 | blk.9.attn_k.weight | Block 9 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
112 | blk.9.attn_k_norm.weight | Block 9 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
113 | blk.9.attn_norm.weight | Block 9 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
114 | blk.9.attn_output.weight | Block 9 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
115 | blk.9.attn_q.weight | Block 9 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
116 | blk.9.attn_q_norm.weight | Block 9 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
117 | blk.9.attn_v.weight | Block 9 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
118 | blk.9.ffn_down_exps.weight | Block 9 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
119 | blk.9.ffn_gate_exps.weight | Block 9 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
120 | blk.9.ffn_gate_inp.weight | Block 9 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
121 | blk.9.ffn_norm.weight | Block 9 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
122 | blk.9.ffn_up_exps.weight | Block 9 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.9: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 10 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
123 | blk.10.attn_k.weight | Block 10 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
124 | blk.10.attn_k_norm.weight | Block 10 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
125 | blk.10.attn_norm.weight | Block 10 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
126 | blk.10.attn_output.weight | Block 10 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
127 | blk.10.attn_q.weight | Block 10 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
128 | blk.10.attn_q_norm.weight | Block 10 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
129 | blk.10.attn_v.weight | Block 10 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
130 | blk.10.ffn_down_exps.weight | Block 10 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
131 | blk.10.ffn_gate_exps.weight | Block 10 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
132 | blk.10.ffn_gate_inp.weight | Block 10 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
133 | blk.10.ffn_norm.weight | Block 10 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
134 | blk.10.ffn_up_exps.weight | Block 10 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.10: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 11 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
135 | blk.11.attn_k.weight | Block 11 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
136 | blk.11.attn_k_norm.weight | Block 11 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
137 | blk.11.attn_norm.weight | Block 11 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
138 | blk.11.attn_output.weight | Block 11 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
139 | blk.11.attn_q.weight | Block 11 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
140 | blk.11.attn_q_norm.weight | Block 11 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
141 | blk.11.attn_v.weight | Block 11 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
142 | blk.11.ffn_down_exps.weight | Block 11 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
143 | blk.11.ffn_gate_exps.weight | Block 11 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
144 | blk.11.ffn_gate_inp.weight | Block 11 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
145 | blk.11.ffn_norm.weight | Block 11 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
146 | blk.11.ffn_up_exps.weight | Block 11 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.11: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 12 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
147 | blk.12.attn_k.weight | Block 12 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
148 | blk.12.attn_k_norm.weight | Block 12 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
149 | blk.12.attn_norm.weight | Block 12 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
150 | blk.12.attn_output.weight | Block 12 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
151 | blk.12.attn_q.weight | Block 12 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
152 | blk.12.attn_q_norm.weight | Block 12 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
153 | blk.12.attn_v.weight | Block 12 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
154 | blk.12.ffn_down_exps.weight | Block 12 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
155 | blk.12.ffn_gate_exps.weight | Block 12 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
156 | blk.12.ffn_gate_inp.weight | Block 12 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
157 | blk.12.ffn_norm.weight | Block 12 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
158 | blk.12.ffn_up_exps.weight | Block 12 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.12: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 13 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
159 | blk.13.attn_k.weight | Block 13 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
160 | blk.13.attn_k_norm.weight | Block 13 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
161 | blk.13.attn_norm.weight | Block 13 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
162 | blk.13.attn_output.weight | Block 13 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
163 | blk.13.attn_q.weight | Block 13 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
164 | blk.13.attn_q_norm.weight | Block 13 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
165 | blk.13.attn_v.weight | Block 13 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
166 | blk.13.ffn_down_exps.weight | Block 13 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
167 | blk.13.ffn_gate_exps.weight | Block 13 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
168 | blk.13.ffn_gate_inp.weight | Block 13 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
169 | blk.13.ffn_norm.weight | Block 13 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
170 | blk.13.ffn_up_exps.weight | Block 13 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.13: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 14 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
171 | blk.14.attn_k.weight | Block 14 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
172 | blk.14.attn_k_norm.weight | Block 14 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
173 | blk.14.attn_norm.weight | Block 14 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
174 | blk.14.attn_output.weight | Block 14 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
175 | blk.14.attn_q.weight | Block 14 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
176 | blk.14.attn_q_norm.weight | Block 14 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
177 | blk.14.attn_v.weight | Block 14 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
178 | blk.14.ffn_down_exps.weight | Block 14 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
179 | blk.14.ffn_gate_exps.weight | Block 14 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
180 | blk.14.ffn_gate_inp.weight | Block 14 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
181 | blk.14.ffn_norm.weight | Block 14 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
182 | blk.14.ffn_up_exps.weight | Block 14 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.14: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 15 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
183 | blk.15.attn_k.weight | Block 15 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
184 | blk.15.attn_k_norm.weight | Block 15 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
185 | blk.15.attn_norm.weight | Block 15 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
186 | blk.15.attn_output.weight | Block 15 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
187 | blk.15.attn_q.weight | Block 15 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
188 | blk.15.attn_q_norm.weight | Block 15 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
189 | blk.15.attn_v.weight | Block 15 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
190 | blk.15.ffn_down_exps.weight | Block 15 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
191 | blk.15.ffn_gate_exps.weight | Block 15 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
192 | blk.15.ffn_gate_inp.weight | Block 15 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
193 | blk.15.ffn_norm.weight | Block 15 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
194 | blk.15.ffn_up_exps.weight | Block 15 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.15: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 16 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
195 | blk.16.attn_k.weight | Block 16 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
196 | blk.16.attn_k_norm.weight | Block 16 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
197 | blk.16.attn_norm.weight | Block 16 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
198 | blk.16.attn_output.weight | Block 16 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
199 | blk.16.attn_q.weight | Block 16 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
200 | blk.16.attn_q_norm.weight | Block 16 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
201 | blk.16.attn_v.weight | Block 16 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
202 | blk.16.ffn_down_exps.weight | Block 16 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
203 | blk.16.ffn_gate_exps.weight | Block 16 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
204 | blk.16.ffn_gate_inp.weight | Block 16 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
205 | blk.16.ffn_norm.weight | Block 16 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
206 | blk.16.ffn_up_exps.weight | Block 16 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.16: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 17 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
207 | blk.17.attn_k.weight | Block 17 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
208 | blk.17.attn_k_norm.weight | Block 17 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
209 | blk.17.attn_norm.weight | Block 17 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
210 | blk.17.attn_output.weight | Block 17 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
211 | blk.17.attn_q.weight | Block 17 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
212 | blk.17.attn_q_norm.weight | Block 17 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
213 | blk.17.attn_v.weight | Block 17 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
214 | blk.17.ffn_down_exps.weight | Block 17 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
215 | blk.17.ffn_gate_exps.weight | Block 17 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
216 | blk.17.ffn_gate_inp.weight | Block 17 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
217 | blk.17.ffn_norm.weight | Block 17 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
218 | blk.17.ffn_up_exps.weight | Block 17 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.17: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 18 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
219 | blk.18.attn_k.weight | Block 18 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
220 | blk.18.attn_k_norm.weight | Block 18 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
221 | blk.18.attn_norm.weight | Block 18 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
222 | blk.18.attn_output.weight | Block 18 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
223 | blk.18.attn_q.weight | Block 18 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
224 | blk.18.attn_q_norm.weight | Block 18 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
225 | blk.18.attn_v.weight | Block 18 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
226 | blk.18.ffn_down_exps.weight | Block 18 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
227 | blk.18.ffn_gate_exps.weight | Block 18 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
228 | blk.18.ffn_gate_inp.weight | Block 18 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
229 | blk.18.ffn_norm.weight | Block 18 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
230 | blk.18.ffn_up_exps.weight | Block 18 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.18: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 19 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
231 | blk.19.attn_k.weight | Block 19 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
232 | blk.19.attn_k_norm.weight | Block 19 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
233 | blk.19.attn_norm.weight | Block 19 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
234 | blk.19.attn_output.weight | Block 19 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
235 | blk.19.attn_q.weight | Block 19 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
236 | blk.19.attn_q_norm.weight | Block 19 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
237 | blk.19.attn_v.weight | Block 19 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
238 | blk.19.ffn_down_exps.weight | Block 19 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
239 | blk.19.ffn_gate_exps.weight | Block 19 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
240 | blk.19.ffn_gate_inp.weight | Block 19 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
241 | blk.19.ffn_norm.weight | Block 19 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
242 | blk.19.ffn_up_exps.weight | Block 19 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.19: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 20 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
243 | blk.20.attn_k.weight | Block 20 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
244 | blk.20.attn_k_norm.weight | Block 20 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
245 | blk.20.attn_norm.weight | Block 20 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
246 | blk.20.attn_output.weight | Block 20 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
247 | blk.20.attn_q.weight | Block 20 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
248 | blk.20.attn_q_norm.weight | Block 20 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
249 | blk.20.attn_v.weight | Block 20 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
250 | blk.20.ffn_down_exps.weight | Block 20 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
251 | blk.20.ffn_gate_exps.weight | Block 20 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
252 | blk.20.ffn_gate_inp.weight | Block 20 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
253 | blk.20.ffn_norm.weight | Block 20 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
254 | blk.20.ffn_up_exps.weight | Block 20 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.20: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 21 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
255 | blk.21.attn_k.weight | Block 21 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
256 | blk.21.attn_k_norm.weight | Block 21 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
257 | blk.21.attn_norm.weight | Block 21 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
258 | blk.21.attn_output.weight | Block 21 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
259 | blk.21.attn_q.weight | Block 21 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
260 | blk.21.attn_q_norm.weight | Block 21 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
261 | blk.21.attn_v.weight | Block 21 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
262 | blk.21.ffn_down_exps.weight | Block 21 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
263 | blk.21.ffn_gate_exps.weight | Block 21 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
264 | blk.21.ffn_gate_inp.weight | Block 21 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
265 | blk.21.ffn_norm.weight | Block 21 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
266 | blk.21.ffn_up_exps.weight | Block 21 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.21: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 22 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
267 | blk.22.attn_k.weight | Block 22 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
268 | blk.22.attn_k_norm.weight | Block 22 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
269 | blk.22.attn_norm.weight | Block 22 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
270 | blk.22.attn_output.weight | Block 22 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
271 | blk.22.attn_q.weight | Block 22 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
272 | blk.22.attn_q_norm.weight | Block 22 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
273 | blk.22.attn_v.weight | Block 22 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
274 | blk.22.ffn_down_exps.weight | Block 22 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
275 | blk.22.ffn_gate_exps.weight | Block 22 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
276 | blk.22.ffn_gate_inp.weight | Block 22 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
277 | blk.22.ffn_norm.weight | Block 22 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
278 | blk.22.ffn_up_exps.weight | Block 22 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.22: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 23 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
279 | blk.23.attn_k.weight | Block 23 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q6_K |
280 | blk.23.attn_k_norm.weight | Block 23 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
281 | blk.23.attn_norm.weight | Block 23 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
282 | blk.23.attn_output.weight | Block 23 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
283 | blk.23.attn_q.weight | Block 23 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q6_K |
284 | blk.23.attn_q_norm.weight | Block 23 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
285 | blk.23.attn_v.weight | Block 23 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
286 | blk.23.ffn_down_exps.weight | Block 23 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
287 | blk.23.ffn_gate_exps.weight | Block 23 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
288 | blk.23.ffn_gate_inp.weight | Block 23 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
289 | blk.23.ffn_norm.weight | Block 23 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
290 | blk.23.ffn_up_exps.weight | Block 23 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.23: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 24 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
291 | blk.24.attn_k.weight | Block 24 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
292 | blk.24.attn_k_norm.weight | Block 24 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
293 | blk.24.attn_norm.weight | Block 24 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
294 | blk.24.attn_output.weight | Block 24 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
295 | blk.24.attn_q.weight | Block 24 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
296 | blk.24.attn_q_norm.weight | Block 24 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
297 | blk.24.attn_v.weight | Block 24 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
298 | blk.24.ffn_down_exps.weight | Block 24 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
299 | blk.24.ffn_gate_exps.weight | Block 24 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
300 | blk.24.ffn_gate_inp.weight | Block 24 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
301 | blk.24.ffn_norm.weight | Block 24 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
302 | blk.24.ffn_up_exps.weight | Block 24 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q6_K |
- Total elements in blk.24: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 25 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
303 | blk.25.attn_k.weight | Block 25 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
304 | blk.25.attn_k_norm.weight | Block 25 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
305 | blk.25.attn_norm.weight | Block 25 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
306 | blk.25.attn_output.weight | Block 25 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
307 | blk.25.attn_q.weight | Block 25 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
308 | blk.25.attn_q_norm.weight | Block 25 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
309 | blk.25.attn_v.weight | Block 25 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
310 | blk.25.ffn_down_exps.weight | Block 25 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
311 | blk.25.ffn_gate_exps.weight | Block 25 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
312 | blk.25.ffn_gate_inp.weight | Block 25 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
313 | blk.25.ffn_norm.weight | Block 25 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
314 | blk.25.ffn_up_exps.weight | Block 25 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.25: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 26 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
315 | blk.26.attn_k.weight | Block 26 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
316 | blk.26.attn_k_norm.weight | Block 26 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
317 | blk.26.attn_norm.weight | Block 26 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
318 | blk.26.attn_output.weight | Block 26 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
319 | blk.26.attn_q.weight | Block 26 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
320 | blk.26.attn_q_norm.weight | Block 26 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
321 | blk.26.attn_v.weight | Block 26 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
322 | blk.26.ffn_down_exps.weight | Block 26 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
323 | blk.26.ffn_gate_exps.weight | Block 26 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
324 | blk.26.ffn_gate_inp.weight | Block 26 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
325 | blk.26.ffn_norm.weight | Block 26 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
326 | blk.26.ffn_up_exps.weight | Block 26 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.26: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 27 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
327 | blk.27.attn_k.weight | Block 27 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
328 | blk.27.attn_k_norm.weight | Block 27 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
329 | blk.27.attn_norm.weight | Block 27 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
330 | blk.27.attn_output.weight | Block 27 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
331 | blk.27.attn_q.weight | Block 27 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
332 | blk.27.attn_q_norm.weight | Block 27 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
333 | blk.27.attn_v.weight | Block 27 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
334 | blk.27.ffn_down_exps.weight | Block 27 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
335 | blk.27.ffn_gate_exps.weight | Block 27 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
336 | blk.27.ffn_gate_inp.weight | Block 27 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
337 | blk.27.ffn_norm.weight | Block 27 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
338 | blk.27.ffn_up_exps.weight | Block 27 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.27: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 28 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
339 | blk.28.attn_k.weight | Block 28 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
340 | blk.28.attn_k_norm.weight | Block 28 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
341 | blk.28.attn_norm.weight | Block 28 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
342 | blk.28.attn_output.weight | Block 28 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
343 | blk.28.attn_q.weight | Block 28 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
344 | blk.28.attn_q_norm.weight | Block 28 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
345 | blk.28.attn_v.weight | Block 28 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
346 | blk.28.ffn_down_exps.weight | Block 28 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
347 | blk.28.ffn_gate_exps.weight | Block 28 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
348 | blk.28.ffn_gate_inp.weight | Block 28 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
349 | blk.28.ffn_norm.weight | Block 28 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
350 | blk.28.ffn_up_exps.weight | Block 28 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.28: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 29 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
351 | blk.29.attn_k.weight | Block 29 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
352 | blk.29.attn_k_norm.weight | Block 29 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
353 | blk.29.attn_norm.weight | Block 29 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
354 | blk.29.attn_output.weight | Block 29 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
355 | blk.29.attn_q.weight | Block 29 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
356 | blk.29.attn_q_norm.weight | Block 29 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
357 | blk.29.attn_v.weight | Block 29 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
358 | blk.29.ffn_down_exps.weight | Block 29 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
359 | blk.29.ffn_gate_exps.weight | Block 29 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
360 | blk.29.ffn_gate_inp.weight | Block 29 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
361 | blk.29.ffn_norm.weight | Block 29 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
362 | blk.29.ffn_up_exps.weight | Block 29 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.29: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 30 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
363 | blk.30.attn_k.weight | Block 30 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
364 | blk.30.attn_k_norm.weight | Block 30 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
365 | blk.30.attn_norm.weight | Block 30 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
366 | blk.30.attn_output.weight | Block 30 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
367 | blk.30.attn_q.weight | Block 30 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
368 | blk.30.attn_q_norm.weight | Block 30 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
369 | blk.30.attn_v.weight | Block 30 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
370 | blk.30.ffn_down_exps.weight | Block 30 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
371 | blk.30.ffn_gate_exps.weight | Block 30 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
372 | blk.30.ffn_gate_inp.weight | Block 30 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
373 | blk.30.ffn_norm.weight | Block 30 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
374 | blk.30.ffn_up_exps.weight | Block 30 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.30: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 31 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
375 | blk.31.attn_k.weight | Block 31 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
376 | blk.31.attn_k_norm.weight | Block 31 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
377 | blk.31.attn_norm.weight | Block 31 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
378 | blk.31.attn_output.weight | Block 31 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
379 | blk.31.attn_q.weight | Block 31 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
380 | blk.31.attn_q_norm.weight | Block 31 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
381 | blk.31.attn_v.weight | Block 31 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
382 | blk.31.ffn_down_exps.weight | Block 31 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
383 | blk.31.ffn_gate_exps.weight | Block 31 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
384 | blk.31.ffn_gate_inp.weight | Block 31 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
385 | blk.31.ffn_norm.weight | Block 31 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
386 | blk.31.ffn_up_exps.weight | Block 31 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.31: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 32 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
387 | blk.32.attn_k.weight | Block 32 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
388 | blk.32.attn_k_norm.weight | Block 32 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
389 | blk.32.attn_norm.weight | Block 32 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
390 | blk.32.attn_output.weight | Block 32 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
391 | blk.32.attn_q.weight | Block 32 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
392 | blk.32.attn_q_norm.weight | Block 32 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
393 | blk.32.attn_v.weight | Block 32 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
394 | blk.32.ffn_down_exps.weight | Block 32 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
395 | blk.32.ffn_gate_exps.weight | Block 32 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
396 | blk.32.ffn_gate_inp.weight | Block 32 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
397 | blk.32.ffn_norm.weight | Block 32 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
398 | blk.32.ffn_up_exps.weight | Block 32 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.32: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 33 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
399 | blk.33.attn_k.weight | Block 33 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
400 | blk.33.attn_k_norm.weight | Block 33 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
401 | blk.33.attn_norm.weight | Block 33 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
402 | blk.33.attn_output.weight | Block 33 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
403 | blk.33.attn_q.weight | Block 33 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
404 | blk.33.attn_q_norm.weight | Block 33 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
405 | blk.33.attn_v.weight | Block 33 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
406 | blk.33.ffn_down_exps.weight | Block 33 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
407 | blk.33.ffn_gate_exps.weight | Block 33 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
408 | blk.33.ffn_gate_inp.weight | Block 33 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
409 | blk.33.ffn_norm.weight | Block 33 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
410 | blk.33.ffn_up_exps.weight | Block 33 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.33: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 34 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
411 | blk.34.attn_k.weight | Block 34 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
412 | blk.34.attn_k_norm.weight | Block 34 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
413 | blk.34.attn_norm.weight | Block 34 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
414 | blk.34.attn_output.weight | Block 34 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
415 | blk.34.attn_q.weight | Block 34 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
416 | blk.34.attn_q_norm.weight | Block 34 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
417 | blk.34.attn_v.weight | Block 34 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
418 | blk.34.ffn_down_exps.weight | Block 34 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
419 | blk.34.ffn_gate_exps.weight | Block 34 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
420 | blk.34.ffn_gate_inp.weight | Block 34 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
421 | blk.34.ffn_norm.weight | Block 34 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
422 | blk.34.ffn_up_exps.weight | Block 34 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.34: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 35 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
423 | blk.35.attn_k.weight | Block 35 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
424 | blk.35.attn_k_norm.weight | Block 35 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
425 | blk.35.attn_norm.weight | Block 35 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
426 | blk.35.attn_output.weight | Block 35 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
427 | blk.35.attn_q.weight | Block 35 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
428 | blk.35.attn_q_norm.weight | Block 35 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
429 | blk.35.attn_v.weight | Block 35 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
430 | blk.35.ffn_down_exps.weight | Block 35 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
431 | blk.35.ffn_gate_exps.weight | Block 35 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
432 | blk.35.ffn_gate_inp.weight | Block 35 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
433 | blk.35.ffn_norm.weight | Block 35 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
434 | blk.35.ffn_up_exps.weight | Block 35 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.35: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 36 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
435 | blk.36.attn_k.weight | Block 36 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
436 | blk.36.attn_k_norm.weight | Block 36 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
437 | blk.36.attn_norm.weight | Block 36 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
438 | blk.36.attn_output.weight | Block 36 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
439 | blk.36.attn_q.weight | Block 36 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
440 | blk.36.attn_q_norm.weight | Block 36 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
441 | blk.36.attn_v.weight | Block 36 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
442 | blk.36.ffn_down_exps.weight | Block 36 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
443 | blk.36.ffn_gate_exps.weight | Block 36 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
444 | blk.36.ffn_gate_inp.weight | Block 36 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
445 | blk.36.ffn_norm.weight | Block 36 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
446 | blk.36.ffn_up_exps.weight | Block 36 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.36: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 37 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
447 | blk.37.attn_k.weight | Block 37 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
448 | blk.37.attn_k_norm.weight | Block 37 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
449 | blk.37.attn_norm.weight | Block 37 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
450 | blk.37.attn_output.weight | Block 37 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
451 | blk.37.attn_q.weight | Block 37 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
452 | blk.37.attn_q_norm.weight | Block 37 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
453 | blk.37.attn_v.weight | Block 37 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
454 | blk.37.ffn_down_exps.weight | Block 37 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
455 | blk.37.ffn_gate_exps.weight | Block 37 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
456 | blk.37.ffn_gate_inp.weight | Block 37 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
457 | blk.37.ffn_norm.weight | Block 37 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
458 | blk.37.ffn_up_exps.weight | Block 37 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.37: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 38 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
459 | blk.38.attn_k.weight | Block 38 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
460 | blk.38.attn_k_norm.weight | Block 38 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
461 | blk.38.attn_norm.weight | Block 38 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
462 | blk.38.attn_output.weight | Block 38 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
463 | blk.38.attn_q.weight | Block 38 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
464 | blk.38.attn_q_norm.weight | Block 38 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
465 | blk.38.attn_v.weight | Block 38 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
466 | blk.38.ffn_down_exps.weight | Block 38 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
467 | blk.38.ffn_gate_exps.weight | Block 38 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
468 | blk.38.ffn_gate_inp.weight | Block 38 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
469 | blk.38.ffn_norm.weight | Block 38 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
470 | blk.38.ffn_up_exps.weight | Block 38 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.38: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 39 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
471 | blk.39.attn_k.weight | Block 39 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
472 | blk.39.attn_k_norm.weight | Block 39 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
473 | blk.39.attn_norm.weight | Block 39 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
474 | blk.39.attn_output.weight | Block 39 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
475 | blk.39.attn_q.weight | Block 39 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
476 | blk.39.attn_q_norm.weight | Block 39 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
477 | blk.39.attn_v.weight | Block 39 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
478 | blk.39.ffn_down_exps.weight | Block 39 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
479 | blk.39.ffn_gate_exps.weight | Block 39 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
480 | blk.39.ffn_gate_inp.weight | Block 39 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
481 | blk.39.ffn_norm.weight | Block 39 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
482 | blk.39.ffn_up_exps.weight | Block 39 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.39: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 40 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
483 | blk.40.attn_k.weight | Block 40 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
484 | blk.40.attn_k_norm.weight | Block 40 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
485 | blk.40.attn_norm.weight | Block 40 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
486 | blk.40.attn_output.weight | Block 40 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
487 | blk.40.attn_q.weight | Block 40 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
488 | blk.40.attn_q_norm.weight | Block 40 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
489 | blk.40.attn_v.weight | Block 40 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
490 | blk.40.ffn_down_exps.weight | Block 40 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
491 | blk.40.ffn_gate_exps.weight | Block 40 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
492 | blk.40.ffn_gate_inp.weight | Block 40 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
493 | blk.40.ffn_norm.weight | Block 40 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
494 | blk.40.ffn_up_exps.weight | Block 40 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.40: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 41 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
495 | blk.41.attn_k.weight | Block 41 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
496 | blk.41.attn_k_norm.weight | Block 41 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
497 | blk.41.attn_norm.weight | Block 41 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
498 | blk.41.attn_output.weight | Block 41 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
499 | blk.41.attn_q.weight | Block 41 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
500 | blk.41.attn_q_norm.weight | Block 41 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
501 | blk.41.attn_v.weight | Block 41 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
502 | blk.41.ffn_down_exps.weight | Block 41 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
503 | blk.41.ffn_gate_exps.weight | Block 41 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
504 | blk.41.ffn_gate_inp.weight | Block 41 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
505 | blk.41.ffn_norm.weight | Block 41 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
506 | blk.41.ffn_up_exps.weight | Block 41 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.41: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 42 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
507 | blk.42.attn_k.weight | Block 42 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
508 | blk.42.attn_k_norm.weight | Block 42 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
509 | blk.42.attn_norm.weight | Block 42 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
510 | blk.42.attn_output.weight | Block 42 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
511 | blk.42.attn_q.weight | Block 42 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
512 | blk.42.attn_q_norm.weight | Block 42 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
513 | blk.42.attn_v.weight | Block 42 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
514 | blk.42.ffn_down_exps.weight | Block 42 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
515 | blk.42.ffn_gate_exps.weight | Block 42 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
516 | blk.42.ffn_gate_inp.weight | Block 42 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
517 | blk.42.ffn_norm.weight | Block 42 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
518 | blk.42.ffn_up_exps.weight | Block 42 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.42: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 43 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
519 | blk.43.attn_k.weight | Block 43 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
520 | blk.43.attn_k_norm.weight | Block 43 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
521 | blk.43.attn_norm.weight | Block 43 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
522 | blk.43.attn_output.weight | Block 43 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
523 | blk.43.attn_q.weight | Block 43 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
524 | blk.43.attn_q_norm.weight | Block 43 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
525 | blk.43.attn_v.weight | Block 43 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
526 | blk.43.ffn_down_exps.weight | Block 43 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
527 | blk.43.ffn_gate_exps.weight | Block 43 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
528 | blk.43.ffn_gate_inp.weight | Block 43 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
529 | blk.43.ffn_norm.weight | Block 43 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
530 | blk.43.ffn_up_exps.weight | Block 43 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.43: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 44 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
531 | blk.44.attn_k.weight | Block 44 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
532 | blk.44.attn_k_norm.weight | Block 44 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
533 | blk.44.attn_norm.weight | Block 44 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
534 | blk.44.attn_output.weight | Block 44 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
535 | blk.44.attn_q.weight | Block 44 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
536 | blk.44.attn_q_norm.weight | Block 44 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
537 | blk.44.attn_v.weight | Block 44 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
538 | blk.44.ffn_down_exps.weight | Block 44 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
539 | blk.44.ffn_gate_exps.weight | Block 44 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
540 | blk.44.ffn_gate_inp.weight | Block 44 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
541 | blk.44.ffn_norm.weight | Block 44 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
542 | blk.44.ffn_up_exps.weight | Block 44 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.44: (~623M) 623120640
- Percentage of total elements: 2.13%
Block 45 Tensor Group : ~623M Elements
T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type |
---|---|---|---|---|---|
543 | blk.45.attn_k.weight | Block 45 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | Q8_0 |
544 | blk.45.attn_k_norm.weight | Block 45 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
545 | blk.45.attn_norm.weight | Block 45 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
546 | blk.45.attn_output.weight | Block 45 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q8_0 |
547 | blk.45.attn_q.weight | Block 45 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | Q8_0 |
548 | blk.45.attn_q_norm.weight | Block 45 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 |
549 | blk.45.attn_v.weight | Block 45 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | F16 |
550 | blk.45.ffn_down_exps.weight | Block 45 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | Q8_0 |
551 | blk.45.ffn_gate_exps.weight | Block 45 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
552 | blk.45.ffn_gate_inp.weight | Block 45 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 |
553 | blk.45.ffn_norm.weight | Block 45 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 |
554 | blk.45.ffn_up_exps.weight | Block 45 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | Q8_0 |
- Total elements in blk.45: (~623M) 623120640
- Percentage of total elements: 2.13%