datasets:

  • other library_name: autogluon license: mit metrics:
  • name: accuracy type: accuracy value: 1.0
  • name: weighted f1 type: f1 value: 1.0 tags:
  • autogluon
  • tabular
  • automl
  • binary-classification

AutoGluon Tabular Predictor for Receiver Stats

This model was trained using AutoGluon's TabularPredictor on the "Receiver Stats" dataset from the Hugging Face Hub. This model works to classify popular NFL wide-recievers as "Elite" or not based on an augmented set of season statistics. This was was validates on a set of real-world wide-reciever statistics.

Training Details

  • Problem Type: binary
  • Trained Models: AutoGluon automatically trained and ensembled a stack of models.
  • Training Time: 222.63 seconds

Best Model: WeightedEnsemble_L2

WeightedEnsemble_L2 is a meta-model that combines predictions from other base models. The goal is to create a more accurate and robust final prediction than any single model alone.

AutoGluon builds a hierarchy of models called "stacking levels."

  • L1 Models (Base Models): This is the first layer of models. It includes a variety of individual machine learning models, like LightGBM, CatBoost, and others, each trained directly on the original dataset's features. The predictions of these L1 models are saved and used as the "features" for the next level.

  • L2 Models (Meta-Models): The WeightedEnsemble_L2 is the meta-model at this second stacking level. It doesn't train on the original data features. Instead, it uses the out-of-fold predictions from all the L1 models as its input. Its job is to find the optimal way to combine these predictions to create a final, superior prediction.

Performance on Original Data

The following are the performance metrics on the original test dataset (df_orig). This represents the model's performance on unseen, real-world data.

  • Accuracy: 1.0000
  • Weighted F1: 1.0000

Best Model Information

  • Problem Type: binary
  • Evaluation Metric: accuracy
  • Validation Score: 0.9968
  • Fit Time: 0.0756 seconds

Best Model Hyperparameters:

use_orig_features: False
valid_stacker: True
max_base_models: 0
max_base_models_per_type: auto
save_bag_folds: True
stratify: auto
bin: auto
n_bins: None

Child Model Information (if applicable):

  • S1F1:
    • Model Type: GreedyWeightedEnsembleModel
    • Fit Time: 0.0756 seconds
    • Fit Hyperparameters:
      • ensemble_size: 1

Model Leaderboard

This table shows the performance of the individual models and ensembles AutoGluon trained on the augmented data test set.

model score_test score_val eval_metric pred_time_test pred_time_val fit_time pred_time_test_marginal pred_time_val_marginal fit_time_marginal stack_level can_infer fit_order
LightGBM_BAG_L1 1 0.996795 accuracy 0.0182326 0.0151243 2.3435 0.0182326 0.0151243 2.3435 1 True 2
LightGBMLarge_BAG_L1 1 0.99359 accuracy 0.0185711 0.0163007 3.83537 0.0185711 0.0163007 3.83537 1 True 10
WeightedEnsemble_L2 1 0.996795 accuracy 0.0196931 0.0160172 2.41913 0.00146055 0.000892878 0.0756328 2 True 31
WeightedEnsemble_L3 1 0.996795 accuracy 0.0198486 0.0160413 2.42848 0.001616 0.000916958 0.0849795 3 True 53
LightGBM_r131_BAG_L1 1 0.99359 accuracy 0.0229213 0.0160203 2.52313 0.0229213 0.0160203 2.52313 1 True 12
LightGBM_r130_BAG_L1 1 0.983974 accuracy 0.0234201 0.0154045 2.29752 0.0234201 0.0154045 2.29752 1 True 24
XGBoost_BAG_L1 1 0.99359 accuracy 0.0628488 0.0438747 1.34741 0.0628488 0.0438747 1.34741 1 True 8
XGBoost_r89_BAG_L1 1 0.996795 accuracy 0.0642865 0.0316713 1.03006 0.0642865 0.0316713 1.03006 1 True 22
RandomForestGini_BAG_L1 1 0.987179 accuracy 0.0765729 0.133395 0.633404 0.0765729 0.133395 0.633404 1 True 3
XGBoost_r33_BAG_L1 1 0.99359 accuracy 0.0790606 0.0315175 1.54053 0.0790606 0.0315175 1.54053 1 True 16
RandomForestEntr_BAG_L1 1 0.987179 accuracy 0.0835617 0.115584 0.63149 0.0835617 0.115584 0.63149 1 True 4
RandomForest_r195_BAG_L1 1 0.99359 accuracy 0.0875499 0.139778 1.26689 0.0875499 0.139778 1.26689 1 True 19
LightGBMXT_BAG_L2 1 0.996795 accuracy 0.496401 0.48371 32.3345 0.0173769 0.0194232 2.37661 2 True 32
LightGBM_BAG_L2 1 0.99359 accuracy 0.49646 0.491807 33.5325 0.0174353 0.0275197 3.5746 2 True 33
LightGBM_r131_BAG_L2 1 0.99359 accuracy 0.497093 0.484313 32.7382 0.0180688 0.0200264 2.78029 2 True 43
LightGBM_r188_BAG_L2 1 0.99359 accuracy 0.497564 0.486396 33.2061 0.0185392 0.022109 3.24822 2 True 51
LightGBMLarge_BAG_L2 1 0.996795 accuracy 0.498554 0.484489 33.2319 0.0195298 0.0202019 3.27402 2 True 41
LightGBM_r96_BAG_L2 1 0.99359 accuracy 0.499495 0.488732 32.6217 0.0204709 0.0244451 2.66378 2 True 45
XGBoost_BAG_L2 1 0.99359 accuracy 0.540117 0.498556 30.7713 0.0610926 0.0342691 0.813397 2 True 39
RandomForest_r195_BAG_L2 1 0.99359 accuracy 0.553618 0.655855 31.4804 0.0745938 0.191568 1.52246 2 True 50
ExtraTreesGini_BAG_L2 1 0.99359 accuracy 0.553702 0.588537 30.6041 0.0746779 0.12425 0.64614 2 True 36
RandomForestEntr_BAG_L2 1 0.996795 accuracy 0.554335 0.582469 30.6311 0.0753102 0.118182 0.67319 2 True 35
ExtraTreesEntr_BAG_L2 1 0.99359 accuracy 0.554695 0.580956 30.607 0.0756705 0.116669 0.649115 2 True 37
ExtraTrees_r42_BAG_L2 1 0.99359 accuracy 0.554827 0.577228 30.6165 0.0758023 0.112941 0.658593 2 True 48
RandomForestGini_BAG_L2 1 0.99359 accuracy 0.556113 0.594949 30.5963 0.0770888 0.130661 0.638425 2 True 34
XGBoost_r33_BAG_L2 1 0.996795 accuracy 0.557637 0.497719 31.1206 0.0786128 0.0334322 1.16271 2 True 47
NeuralNetTorch_BAG_L2 1 0.99359 accuracy 0.558177 0.545795 37.6299 0.0791523 0.0815077 7.67201 2 True 40
NeuralNetFastAI_BAG_L2 1 0.996795 accuracy 0.564292 0.533021 33.2418 0.0852675 0.0687342 3.28393 2 True 38
NeuralNetTorch_r22_BAG_L2 1 0.99359 accuracy 0.564964 0.540373 36.0072 0.0859399 0.0760863 6.04927 2 True 46
NeuralNetFastAI_r191_BAG_L2 1 0.996795 accuracy 0.572105 0.538377 35.5212 0.0930803 0.0740898 5.56326 2 True 44
NeuralNetTorch_r79_BAG_L2 1 0.99359 accuracy 0.57672 0.552144 37.0812 0.0976958 0.0878572 7.12327 2 True 42
NeuralNetFastAI_r145_BAG_L2 1 0.996795 accuracy 0.581234 0.531907 33.7659 0.10221 0.06762 3.80796 2 True 52
NeuralNetFastAI_r102_BAG_L2 1 0.99359 accuracy 0.606663 0.552316 40.9467 0.127638 0.0880289 10.9887 2 True 49
LightGBMXT_BAG_L1 0.987179 0.980769 accuracy 0.0261004 0.0248475 3.3106 0.0261004 0.0248475 3.3106 1 True 1
XGBoost_r194_BAG_L1 0.987179 0.99359 accuracy 0.0529051 0.0212286 0.974106 0.0529051 0.0212286 0.974106 1 True 27
ExtraTrees_r172_BAG_L1 0.987179 0.951923 accuracy 0.0861583 0.118652 0.644855 0.0861583 0.118652 0.644855 1 True 28
LightGBM_r188_BAG_L1 0.974359 0.974359 accuracy 0.0304482 0.0173674 2.59352 0.0304482 0.0173674 2.59352 1 True 20
ExtraTrees_r42_BAG_L1 0.974359 0.961538 accuracy 0.0853848 0.119849 0.646125 0.0853848 0.119849 0.646125 1 True 17
ExtraTreesEntr_BAG_L1 0.961538 0.939103 accuracy 0.0842819 0.118352 0.690058 0.0842819 0.118352 0.690058 1 True 6
ExtraTreesGini_BAG_L1 0.961538 0.948718 accuracy 0.0864713 0.115839 0.628436 0.0864713 0.115839 0.628436 1 True 5
NeuralNetFastAI_r145_BAG_L1 0.961538 0.964744 accuracy 0.0907433 0.069463 7.14193 0.0907433 0.069463 7.14193 1 True 21
NeuralNetTorch_BAG_L1 0.948718 0.945513 accuracy 0.0804045 0.0681808 11.8957 0.0804045 0.0681808 11.8957 1 True 9
NeuralNetTorch_r86_BAG_L1 0.948718 0.942308 accuracy 0.0839164 0.0717986 10.5252 0.0839164 0.0717986 10.5252 1 True 25
NeuralNetTorch_r22_BAG_L1 0.948718 0.945513 accuracy 0.0851119 0.0708473 10.4364 0.0851119 0.0708473 10.4364 1 True 15
NeuralNetTorch_r79_BAG_L1 0.948718 0.951923 accuracy 0.0932202 0.0793908 10.3078 0.0932202 0.0793908 10.3078 1 True 11
NeuralNetTorch_r30_BAG_L1 0.948718 0.948718 accuracy 0.109228 0.0770526 13.1373 0.109228 0.0770526 13.1373 1 True 23
NeuralNetFastAI_BAG_L1 0.935897 0.961538 accuracy 0.087167 0.0731091 3.97873 0.087167 0.0731091 3.97873 1 True 7
NeuralNetFastAI_r11_BAG_L1 0.935897 0.958333 accuracy 0.0967791 0.0799751 8.92228 0.0967791 0.0799751 8.92228 1 True 26
NeuralNetFastAI_r103_BAG_L1 0.935897 0.948718 accuracy 0.100346 0.0640857 5.52301 0.100346 0.0640857 5.52301 1 True 29
NeuralNetFastAI_r191_BAG_L1 0.935897 0.958333 accuracy 0.104501 0.0720098 8.91329 0.104501 0.0720098 8.91329 1 True 13
NeuralNetFastAI_r102_BAG_L1 0.935897 0.967949 accuracy 0.13035 0.0784743 14.3636 0.13035 0.0784743 14.3636 1 True 18
LightGBM_r96_BAG_L1 0.923077 0.945513 accuracy 0.0355909 0.0173631 2.36029 0.0355909 0.0173631 2.36029 1 True 14
NeuralNetTorch_r14_BAG_L1 0.923077 0.942308 accuracy 0.0753639 0.0766191 6.80521 0.0753639 0.0766191 6.80521 1 True 30

How to Use

You can load this model and make predictions using AutoGluon Do not use this model to draw real-world conclusions, this model is for educational and instructional purposes only.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train ecopus/receiverstats-autolguon-predictor