litbank-coref-mem-large-triple
This model is a fine-tuned version of google/flan-t5-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0078
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.9003 | 0.2896 | 500 | 0.0298 |
0.0364 | 0.5792 | 1000 | 0.0206 |
0.0171 | 0.8688 | 1500 | 0.0175 |
0.0149 | 1.1581 | 2000 | 0.0154 |
0.0122 | 1.4477 | 2500 | 0.0142 |
0.0117 | 1.7373 | 3000 | 0.0128 |
0.0115 | 2.0266 | 3500 | 0.0118 |
0.0091 | 2.3162 | 4000 | 0.0114 |
0.0091 | 2.6058 | 4500 | 0.0108 |
0.0087 | 2.8955 | 5000 | 0.0101 |
0.0079 | 3.1848 | 5500 | 0.0101 |
0.0075 | 3.4744 | 6000 | 0.0097 |
0.0072 | 3.7640 | 6500 | 0.0094 |
0.0071 | 4.0533 | 7000 | 0.0092 |
0.0063 | 4.3429 | 7500 | 0.0089 |
0.0066 | 4.6325 | 8000 | 0.0085 |
0.0063 | 4.9221 | 8500 | 0.0084 |
0.006 | 5.2114 | 9000 | 0.0082 |
0.0056 | 5.5010 | 9500 | 0.0080 |
0.0056 | 5.7906 | 10000 | 0.0080 |
0.0053 | 6.0799 | 10500 | 0.0080 |
0.0054 | 6.3695 | 11000 | 0.0079 |
0.0052 | 6.6591 | 11500 | 0.0079 |
0.0051 | 6.9487 | 12000 | 0.0078 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support