Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/CodeLlama-7b-hf-flash
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5f95eb3573d6f8c7_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5f95eb3573d6f8c7_train_data.json
  type:
    field_instruction: prompt
    field_output: GEITje-7B-ultra
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: eddysang/73d880ca-ef9e-4193-b6d0-153d42db6304
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 150
micro_batch_size: 2
mlflow_experiment_name: /tmp/5f95eb3573d6f8c7_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: yaudayah0
wandb_mode: online
wandb_name: 1ba85094-a6ee-4339-98cf-58fd326aa71c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1ba85094-a6ee-4339-98cf-58fd326aa71c
warmup_steps: 20
weight_decay: 0.015
xformers_attention: false

73d880ca-ef9e-4193-b6d0-153d42db6304

This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf-flash on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4293

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • training_steps: 150

Training results

Training Loss Epoch Step Validation Loss
53.6584 0.0013 1 1.6596
45.922 0.0665 50 1.4665
45.351 0.1331 100 1.4355
46.4302 0.1996 150 1.4293

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for eddysang/73d880ca-ef9e-4193-b6d0-153d42db6304

Adapter
(244)
this model