DSR1-1.5B-llmc-awq-w4

AWQ quantized version of DeepSeek-R1-Distill-Qwen-1.5B using llm-compressor.

Model Details

  • Base Model: DeepSeek-R1-Distill-Qwen-1.5B
  • Quantization: AWQ W4A16 (4-bit weights, 16-bit activations)
  • Group Size: 128
  • Framework: llm-compressor
  • Memory: 1.6GB (vs 3GB original)

Usage

vLLM

from vllm import LLM

model = LLM("edge-inference/DSR1-1.5B-llmc-awq-w4")
output = model.generate("Hello, how are you?")
print(output[0].outputs[0].text)

Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("edge-inference/DSR1-1.5B-llmc-awq-w4")
tokenizer = AutoTokenizer.from_pretrained("edge-inference/DSR1-1.5B-llmc-awq-w4")

Performance

  • Memory: 47% reduction (1.6GB vs 3GB)
  • Speed: Faster inference due to reduced memory bandwidth
  • Quality: Minimal degradation with AWQ quantization

License

Same as base model (DeepSeek License)

Downloads last month
8
Safetensors
Model size
641M params
Tensor type
I64
·
I32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for edge-inference/DSR1-1.5B-llmc-awq-w4

Quantized
(225)
this model