Improve model card and add metadata

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +87 -3
README.md CHANGED
@@ -1,3 +1,87 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: pytorch
4
+ pipeline_tag: image-to-image
5
+ tags:
6
+ - medical-imaging
7
+ - registration
8
+ - 3d-registration
9
+ - x-ray
10
+ - ct
11
+ - mri
12
+ ---
13
+
14
+ # `xvr`: X-ray to Volume Registration
15
+
16
+ [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](LICENSE)
17
+ <a href="https://colab.research.google.com/drive/1K9lBPxcLh55mr8o50Y7aHkjzjEWKPCrM?usp=sharing"><img alt="Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a>
18
+ <a href="https://huggingface.co/eigenvivek/xvr/tree/main" target="_blank"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-ffc107?color=ffc107&logoColor=white"/></a>
19
+ <a href="https://huggingface.co/datasets/eigenvivek/xvr-data/tree/main" target="_blank"><img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Data-ffc107?color=ffc107&logoColor=white"/></a>
20
+ [![uv](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/uv/main/assets/badge/v0.json)](https://github.com/astral-sh/uv)
21
+
22
+ **`xvr` is a PyTorch package for training, fine-tuning, and performing 2D/3D X-ray to CT/MR registration using pose regression models.** It provides a streamlined CLI and API for training patient-specific registration models efficiently. Key features include significantly faster training than comparable methods, submillimeter registration accuracy, and human-interpretable pose parameters.
23
+
24
+
25
+ <p align="center">
26
+ <img width="410" alt="image" src="https://github.com/user-attachments/assets/8a01c184-f6f1-420e-82b9-1cbe733adf7f" />
27
+ </p>
28
+
29
+ ## Key Features
30
+
31
+ - 🚀 Single CLI/API for training and registration.
32
+ - ⚡️ Significantly faster training than existing methods.
33
+ - 📐 Submillimeter registration accuracy.
34
+ - 🩺 Human-interpretable pose parameters.
35
+ - 🐍 Pure Python/PyTorch implementation.
36
+ - 🖥️ Cross-platform support (macOS, Linux, Windows).
37
+
38
+ `xvr` leverages [`DiffDRR`](https://github.com/eigenvivek/DiffDRR), the differentiable X-ray renderer.
39
+
40
+ ## Installation and Usage
41
+
42
+ Refer to the [GitHub repository](https://github.com/eigenvivek/xvr) for detailed installation instructions, usage examples, and documentation on training, finetuning, and registration.
43
+
44
+
45
+ ## Experiments
46
+
47
+ #### Models
48
+
49
+ Pretrained models are available [here](https://huggingface.co/eigenvivek/xvr/tree/main).
50
+
51
+ #### Data
52
+
53
+ Benchmarks datasets, reformatted into DICOM/NIfTI files, are available [here](https://huggingface.co/datasets/eigenvivek/xvr-data/tree/main).
54
+
55
+ If you use the [`DeepFluoro`](https://github.com/rg2/DeepFluoroLabeling-IPCAI2020) dataset, please cite:
56
+
57
+ @article{grupp2020automatic,
58
+ title={Automatic annotation of hip anatomy in fluoroscopy for robust and efficient 2D/3D registration},
59
+ author={Grupp, Robert B and Unberath, Mathias and Gao, Cong and Hegeman, Rachel A and Murphy, Ryan J and Alexander, Clayton P and Otake, Yoshito and McArthur, Benjamin A and Armand, Mehran and Taylor, Russell H},
60
+ journal={International journal of computer assisted radiology and surgery},
61
+ volume={15},
62
+ pages={759--769},
63
+ year={2020},
64
+ publisher={Springer}
65
+ }
66
+
67
+ If you use the [`Ljubljana`](https://lit.fe.uni-lj.si/en/research/resources/3D-2D-GS-CA/) dataset, please cite:
68
+
69
+ @article{pernus20133d,
70
+ title={3D-2D registration of cerebral angiograms: A method and evaluation on clinical images},
71
+ author={Mitrović, Uros˘ and S˘piclin, Z˘iga and Likar, Bos˘tjan and Pernus˘, Franjo},
72
+ journal={IEEE transactions on medical imaging},
73
+ volume={32},
74
+ number={8},
75
+ pages={1550--1563},
76
+ year={2013},
77
+ publisher={IEEE}
78
+ }
79
+
80
+
81
+ #### Logging
82
+
83
+ We use `wandb` to log experiments. To use this feature, set the `WANDB_API_KEY` environment variable by adding the following line to your `.zshrc` or `.bashrc` file:
84
+
85
+ ```zsh
86
+ export WANDB_API_KEY=your_api_key
87
+ ```