distilbert-base-turkish-cased_allnli_tr

This model is a fine-tuned version of dbmdz/distilbert-base-turkish-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6481
  • Accuracy: 0.7381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.94 0.03 1000 0.9074 0.5813
0.8102 0.07 2000 0.8802 0.5949
0.7737 0.1 3000 0.8491 0.6155
0.7576 0.14 4000 0.8283 0.6261
0.7286 0.17 5000 0.8150 0.6362
0.7162 0.2 6000 0.7998 0.6400
0.7092 0.24 7000 0.7830 0.6565
0.6962 0.27 8000 0.7653 0.6629
0.6876 0.31 9000 0.7630 0.6687
0.6778 0.34 10000 0.7475 0.6739
0.6737 0.37 11000 0.7495 0.6781
0.6712 0.41 12000 0.7350 0.6826
0.6559 0.44 13000 0.7274 0.6897
0.6493 0.48 14000 0.7248 0.6902
0.6483 0.51 15000 0.7263 0.6858
0.6445 0.54 16000 0.7070 0.6978
0.6467 0.58 17000 0.7083 0.6981
0.6332 0.61 18000 0.6996 0.7004
0.6288 0.65 19000 0.6979 0.6978
0.6308 0.68 20000 0.6912 0.7040
0.622 0.71 21000 0.6904 0.7092
0.615 0.75 22000 0.6872 0.7094
0.6186 0.78 23000 0.6877 0.7075
0.6183 0.82 24000 0.6818 0.7111
0.6115 0.85 25000 0.6856 0.7122
0.608 0.88 26000 0.6697 0.7179
0.6071 0.92 27000 0.6727 0.7181
0.601 0.95 28000 0.6798 0.7118
0.6018 0.99 29000 0.6854 0.7071
0.5762 1.02 30000 0.6697 0.7214
0.5507 1.05 31000 0.6710 0.7185
0.5575 1.09 32000 0.6709 0.7226
0.5493 1.12 33000 0.6659 0.7191
0.5464 1.15 34000 0.6709 0.7232
0.5595 1.19 35000 0.6642 0.7220
0.5446 1.22 36000 0.6709 0.7202
0.5524 1.26 37000 0.6751 0.7148
0.5473 1.29 38000 0.6642 0.7209
0.5477 1.32 39000 0.6662 0.7223
0.5522 1.36 40000 0.6586 0.7227
0.5406 1.39 41000 0.6602 0.7258
0.54 1.43 42000 0.6564 0.7273
0.5458 1.46 43000 0.6780 0.7213
0.5448 1.49 44000 0.6561 0.7235
0.5418 1.53 45000 0.6600 0.7253
0.5408 1.56 46000 0.6616 0.7274
0.5451 1.6 47000 0.6557 0.7283
0.5385 1.63 48000 0.6583 0.7295
0.5261 1.66 49000 0.6468 0.7325
0.5364 1.7 50000 0.6447 0.7329
0.5294 1.73 51000 0.6429 0.7320
0.5332 1.77 52000 0.6508 0.7272
0.5274 1.8 53000 0.6492 0.7326
0.5286 1.83 54000 0.6470 0.7318
0.5359 1.87 55000 0.6393 0.7354
0.5366 1.9 56000 0.6445 0.7367
0.5296 1.94 57000 0.6413 0.7313
0.5346 1.97 58000 0.6393 0.7315
0.5264 2.0 59000 0.6448 0.7357
0.4857 2.04 60000 0.6640 0.7335
0.4888 2.07 61000 0.6612 0.7318
0.4964 2.11 62000 0.6516 0.7337
0.493 2.14 63000 0.6503 0.7356
0.4961 2.17 64000 0.6519 0.7348
0.4847 2.21 65000 0.6517 0.7327
0.483 2.24 66000 0.6555 0.7310
0.4857 2.28 67000 0.6525 0.7312
0.484 2.31 68000 0.6444 0.7342
0.4792 2.34 69000 0.6508 0.7330
0.488 2.38 70000 0.6513 0.7344
0.472 2.41 71000 0.6547 0.7346
0.4872 2.45 72000 0.6500 0.7342
0.4782 2.48 73000 0.6585 0.7358
0.481 2.51 74000 0.6477 0.7356
0.4822 2.55 75000 0.6587 0.7346
0.4728 2.58 76000 0.6572 0.7340
0.4841 2.62 77000 0.6443 0.7374
0.4885 2.65 78000 0.6494 0.7362
0.4752 2.68 79000 0.6509 0.7382
0.4883 2.72 80000 0.6457 0.7371
0.4888 2.75 81000 0.6497 0.7364
0.4844 2.79 82000 0.6481 0.7376
0.4833 2.82 83000 0.6451 0.7389
0.48 2.85 84000 0.6423 0.7373
0.4832 2.89 85000 0.6477 0.7357
0.4805 2.92 86000 0.6464 0.7379
0.4775 2.96 87000 0.6477 0.7380
0.4843 2.99 88000 0.6481 0.7381

Framework versions

  • Transformers 4.12.3
  • Pytorch 1.10.0+cu102
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
142
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for emrecan/distilbert-base-turkish-cased-allnli_tr

Finetuned
(10)
this model

Dataset used to train emrecan/distilbert-base-turkish-cased-allnli_tr

Spaces using emrecan/distilbert-base-turkish-cased-allnli_tr 2