stt-april-1 / README.md
eolang's picture
End of training
786a785 verified
metadata
library_name: transformers
language:
  - sw
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: stt-april-1
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17
          type: mozilla-foundation/common_voice_17_0
        metrics:
          - name: Wer
            type: wer
            value: 26.149347116430903

stt-april-1

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7422
  • Wer Ortho: 32.1876
  • Wer: 26.1493

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.6457 0.6180 500 0.6308 38.7728 31.6649
0.3566 1.2361 1000 0.5699 36.3837 29.0941
0.3687 1.8541 1500 0.5554 34.7230 27.5095
0.2412 2.4722 2000 0.5469 31.7690 25.0986
0.1654 3.0902 2500 0.6037 32.8070 26.1459
0.172 3.7083 3000 0.5907 32.5790 25.2142
0.1214 4.3263 3500 0.6065 31.8337 24.9354
0.1488 4.9444 4000 0.6024 31.5376 24.9966
0.1034 5.5624 4500 0.6288 32.1161 25.4931
0.0818 6.1805 5000 0.6470 31.9051 25.5373
0.0955 6.7985 5500 0.6566 32.1195 25.4795
0.0744 7.4166 6000 0.6748 31.9153 25.6257
0.0784 8.0346 6500 0.6908 32.3577 25.9759
0.0684 8.6527 7000 0.6959 32.6538 26.3772
0.0587 9.2707 7500 0.7318 32.2931 25.7991
0.0656 9.8888 8000 0.7182 32.1467 25.8535
0.0589 10.5068 8500 0.7361 32.4428 26.3500
0.049 11.1248 9000 0.7597 32.3884 25.9827
0.0562 11.7429 9500 0.7504 32.2318 25.7481
0.0503 12.3609 10000 0.7422 32.1876 26.1493

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0