SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ernestobs7/legal-ft-v0")
# Run inference
sentences = [
'What are the dates of the articles listed as more recent articles in the context?',
"Posted 31st December 2024 at 6:07 pm · Follow me on Mastodon or Twitter or subscribe to my newsletter\n\n\nMore recent articles\n\nRun LLMs on macOS using llm-mlx and Apple's MLX framework - 15th February 2025\nURL-addressable Pyodide Python environments - 13th February 2025\nUsing pip to install a Large Language Model that's under 100MB - 7th February 2025\n\n\n \n\n\nThis is Things we learned about LLMs in 2024 by Simon Willison, posted on 31st December 2024.\n\nPart of series LLMs annual review\n\nStuff we figured out about AI in 2023 - Dec. 31, 2023, 11:59 p.m. \nThings we learned about LLMs in 2024 - Dec. 31, 2024, 6:07 p.m. \n\n\n\n google\n 347\n\n\n ai\n 1098\n\n\n openai\n 255",
'Against this photo of butterflies at the California Academy of Sciences:\n\n\nA shallow dish, likely a hummingbird or butterfly feeder, is red. Pieces of orange slices of fruit are visible inside the dish.\nTwo butterflies are positioned in the feeder, one is a dark brown/black butterfly with white/cream-colored markings. The other is a large, brown butterfly with patterns of lighter brown, beige, and black markings, including prominent eye spots. The larger brown butterfly appears to be feeding on the fruit.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.75 |
cosine_accuracy@3 | 1.0 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.75 |
cosine_precision@3 | 0.3333 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.75 |
cosine_recall@3 | 1.0 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.8968 |
cosine_mrr@10 | 0.8611 |
cosine_map@100 | 0.8611 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 156 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 156 samples:
sentence_0 sentence_1 type string string details - min: 13 tokens
- mean: 20.12 tokens
- max: 33 tokens
- min: 43 tokens
- mean: 130.53 tokens
- max: 204 tokens
- Samples:
sentence_0 sentence_1 What are the hardware requirements mentioned for running models like GPT-4?
This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
These models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.
The fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.What does the author attribute the ability to run these models on less powerful hardware to?
This remains astonishing to me. I thought a model with the capabilities and output quality of GPT-4 needed a datacenter class server with one or more $40,000+ GPUs.
These models take up enough of my 64GB of RAM that I don’t run them often—they don’t leave much room for anything else.
The fact that they run at all is a testament to the incredible training and inference performance gains that we’ve figured out over the past year. It turns out there was a lot of low-hanging fruit to be harvested in terms of model efficiency. I expect there’s still more to come.What challenges are associated with using LLMs in 2024?
The year of slop
Synthetic training data works great
LLMs somehow got even harder to use
Knowledge is incredibly unevenly distributed
LLMs need better criticism
Everything tagged “llms” on my blog in 2024 - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 10per_device_eval_batch_size
: 10num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 10per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_ndcg@10 |
---|---|---|
1.0 | 16 | 0.8885 |
2.0 | 32 | 0.8939 |
3.0 | 48 | 0.8939 |
3.125 | 50 | 0.8994 |
4.0 | 64 | 0.8939 |
5.0 | 80 | 0.8939 |
6.0 | 96 | 0.8968 |
6.25 | 100 | 0.8968 |
7.0 | 112 | 0.8968 |
8.0 | 128 | 0.8968 |
9.0 | 144 | 0.8968 |
9.375 | 150 | 0.8968 |
10.0 | 160 | 0.8968 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ernestobs7/legal-ft-v0
Base model
Snowflake/snowflake-arctic-embed-lEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.750
- Cosine Accuracy@3 on Unknownself-reported1.000
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.750
- Cosine Precision@3 on Unknownself-reported0.333
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.750
- Cosine Recall@3 on Unknownself-reported1.000