Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: false
base_model: unsloth/SmolLM-135M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
  - 0035b2121f3750b5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0035b2121f3750b5_train_data.json
  type:
    field_instruction: context
    field_output: question
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/7a705685-b5a0-46e9-a82b-6b03715fff7d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 10
mlflow_experiment_name: /tmp/0035b2121f3750b5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 1661de9e-91d5-48bc-825d-83583560bcf1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1661de9e-91d5-48bc-825d-83583560bcf1
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

7a705685-b5a0-46e9-a82b-6b03715fff7d

This model is a fine-tuned version of unsloth/SmolLM-135M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2724

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 40
  • optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
4.0837 0.0004 1 3.9034
2.0119 0.0888 200 2.0735
1.9729 0.1775 400 1.8873
1.7298 0.2663 600 1.7849
1.6232 0.3551 800 1.7007
1.8815 0.4439 1000 1.6521
1.7189 0.5326 1200 1.6111
1.6542 0.6214 1400 1.5725
1.5466 0.7102 1600 1.5364
1.5247 0.7989 1800 1.5042
1.4437 0.8877 2000 1.4765
1.3985 0.9765 2200 1.4447
1.3636 1.0652 2400 1.4302
1.4208 1.1540 2600 1.4131
1.3557 1.2428 2800 1.3957
1.4026 1.3316 3000 1.3781
1.1675 1.4203 3200 1.3662
1.2471 1.5091 3400 1.3605
1.3073 1.5979 3600 1.3409
1.2123 1.6866 3800 1.3271
1.342 1.7754 4000 1.3176
1.2351 1.8642 4200 1.3085
1.2137 1.9530 4400 1.3016
1.3767 2.0417 4600 1.3004
1.1753 2.1305 4800 1.2907
1.2174 2.2193 5000 1.2861
1.2507 2.3080 5200 1.2850
1.2156 2.3968 5400 1.2805
1.2422 2.4856 5600 1.2778
1.3742 2.5743 5800 1.2753
1.2677 2.6631 6000 1.2738
1.3482 2.7519 6200 1.2720
1.1884 2.8407 6400 1.2724
1.3061 2.9294 6600 1.2724

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/7a705685-b5a0-46e9-a82b-6b03715fff7d

Adapter
(152)
this model