See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: false
base_model: unsloth/SmolLM-135M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
- 0035b2121f3750b5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/0035b2121f3750b5_train_data.json
type:
field_instruction: context
field_output: question
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/7a705685-b5a0-46e9-a82b-6b03715fff7d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 10
mlflow_experiment_name: /tmp/0035b2121f3750b5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 1661de9e-91d5-48bc-825d-83583560bcf1
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1661de9e-91d5-48bc-825d-83583560bcf1
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
7a705685-b5a0-46e9-a82b-6b03715fff7d
This model is a fine-tuned version of unsloth/SmolLM-135M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2724
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.0837 | 0.0004 | 1 | 3.9034 |
2.0119 | 0.0888 | 200 | 2.0735 |
1.9729 | 0.1775 | 400 | 1.8873 |
1.7298 | 0.2663 | 600 | 1.7849 |
1.6232 | 0.3551 | 800 | 1.7007 |
1.8815 | 0.4439 | 1000 | 1.6521 |
1.7189 | 0.5326 | 1200 | 1.6111 |
1.6542 | 0.6214 | 1400 | 1.5725 |
1.5466 | 0.7102 | 1600 | 1.5364 |
1.5247 | 0.7989 | 1800 | 1.5042 |
1.4437 | 0.8877 | 2000 | 1.4765 |
1.3985 | 0.9765 | 2200 | 1.4447 |
1.3636 | 1.0652 | 2400 | 1.4302 |
1.4208 | 1.1540 | 2600 | 1.4131 |
1.3557 | 1.2428 | 2800 | 1.3957 |
1.4026 | 1.3316 | 3000 | 1.3781 |
1.1675 | 1.4203 | 3200 | 1.3662 |
1.2471 | 1.5091 | 3400 | 1.3605 |
1.3073 | 1.5979 | 3600 | 1.3409 |
1.2123 | 1.6866 | 3800 | 1.3271 |
1.342 | 1.7754 | 4000 | 1.3176 |
1.2351 | 1.8642 | 4200 | 1.3085 |
1.2137 | 1.9530 | 4400 | 1.3016 |
1.3767 | 2.0417 | 4600 | 1.3004 |
1.1753 | 2.1305 | 4800 | 1.2907 |
1.2174 | 2.2193 | 5000 | 1.2861 |
1.2507 | 2.3080 | 5200 | 1.2850 |
1.2156 | 2.3968 | 5400 | 1.2805 |
1.2422 | 2.4856 | 5600 | 1.2778 |
1.3742 | 2.5743 | 5800 | 1.2753 |
1.2677 | 2.6631 | 6000 | 1.2738 |
1.3482 | 2.7519 | 6200 | 1.2720 |
1.1884 | 2.8407 | 6400 | 1.2724 |
1.3061 | 2.9294 | 6600 | 1.2724 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support