See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: unsloth/SmolLM-135M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d3e5bdd73347c26c_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d3e5bdd73347c26c_train_data.json
type:
field_input: system_prompt
field_instruction: problem
field_output: solution
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/c06956a3-fe98-497b-b43e-8ab5d5a0d214
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 3
mlflow_experiment_name: /tmp/d3e5bdd73347c26c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
restore_best_weights: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 6f6675a6-cb87-49fd-824d-f8d0dfce8107
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6f6675a6-cb87-49fd-824d-f8d0dfce8107
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
c06956a3-fe98-497b-b43e-8ab5d5a0d214
This model is a fine-tuned version of unsloth/SmolLM-135M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9896
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 48
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.2311 | 0.0010 | 1 | 1.7154 |
2.1415 | 0.0971 | 100 | 1.2307 |
1.9643 | 0.1941 | 200 | 1.1575 |
1.9656 | 0.2912 | 300 | 1.1358 |
1.8197 | 0.3883 | 400 | 1.1138 |
1.9307 | 0.4853 | 500 | 1.0955 |
1.7157 | 0.5824 | 600 | 1.0814 |
1.8345 | 0.6794 | 700 | 1.0735 |
1.8775 | 0.7765 | 800 | 1.0685 |
1.687 | 0.8736 | 900 | 1.0693 |
1.8377 | 0.9706 | 1000 | 1.0511 |
0.9808 | 1.0677 | 1100 | 1.0321 |
1.0324 | 1.1648 | 1200 | 1.0326 |
1.0425 | 1.2618 | 1300 | 1.0186 |
0.969 | 1.3589 | 1400 | 1.0205 |
0.9458 | 1.4560 | 1500 | 1.0165 |
0.9246 | 1.5530 | 1600 | 1.0105 |
0.8464 | 1.6501 | 1700 | 1.0113 |
0.9311 | 1.7471 | 1800 | 1.0011 |
0.9494 | 1.8442 | 1900 | 1.0005 |
0.879 | 1.9413 | 2000 | 1.0046 |
1.0447 | 2.0383 | 2100 | 0.9988 |
1.0148 | 2.1354 | 2200 | 0.9965 |
1.0102 | 2.2325 | 2300 | 0.9945 |
1.0027 | 2.3295 | 2400 | 0.9951 |
1.2094 | 2.4266 | 2500 | 0.9949 |
0.9836 | 2.5237 | 2600 | 0.9879 |
0.9018 | 2.6207 | 2700 | 0.9893 |
1.0633 | 2.7178 | 2800 | 0.9944 |
0.9116 | 2.8149 | 2900 | 0.9896 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support