Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
base_model: unsloth/SmolLM-135M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d3e5bdd73347c26c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d3e5bdd73347c26c_train_data.json
  type:
    field_input: system_prompt
    field_instruction: problem
    field_output: solution
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/c06956a3-fe98-497b-b43e-8ab5d5a0d214
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 3
mlflow_experiment_name: /tmp/d3e5bdd73347c26c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
restore_best_weights: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 6f6675a6-cb87-49fd-824d-f8d0dfce8107
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6f6675a6-cb87-49fd-824d-f8d0dfce8107
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c06956a3-fe98-497b-b43e-8ab5d5a0d214

This model is a fine-tuned version of unsloth/SmolLM-135M on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 48
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.2311 0.0010 1 1.7154
2.1415 0.0971 100 1.2307
1.9643 0.1941 200 1.1575
1.9656 0.2912 300 1.1358
1.8197 0.3883 400 1.1138
1.9307 0.4853 500 1.0955
1.7157 0.5824 600 1.0814
1.8345 0.6794 700 1.0735
1.8775 0.7765 800 1.0685
1.687 0.8736 900 1.0693
1.8377 0.9706 1000 1.0511
0.9808 1.0677 1100 1.0321
1.0324 1.1648 1200 1.0326
1.0425 1.2618 1300 1.0186
0.969 1.3589 1400 1.0205
0.9458 1.4560 1500 1.0165
0.9246 1.5530 1600 1.0105
0.8464 1.6501 1700 1.0113
0.9311 1.7471 1800 1.0011
0.9494 1.8442 1900 1.0005
0.879 1.9413 2000 1.0046
1.0447 2.0383 2100 0.9988
1.0148 2.1354 2200 0.9965
1.0102 2.2325 2300 0.9945
1.0027 2.3295 2400 0.9951
1.2094 2.4266 2500 0.9949
0.9836 2.5237 2600 0.9879
0.9018 2.6207 2700 0.9893
1.0633 2.7178 2800 0.9944
0.9116 2.8149 2900 0.9896

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/c06956a3-fe98-497b-b43e-8ab5d5a0d214

Adapter
(152)
this model