See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_resume_from_checkpoints: false
base_model: EleutherAI/pythia-160m
bf16: false
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5cf4bc9f2d02ce29_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5cf4bc9f2d02ce29_train_data.json
type:
field_instruction: Description
field_output: Product Name
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 4
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/d71d5b54-5e85-4947-9c78-097fdffe44b5
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 4
mlflow_experiment_name: /tmp/5cf4bc9f2d02ce29_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 451a522d-4518-49f1-886b-2a8292a7075c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 451a522d-4518-49f1-886b-2a8292a7075c
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
d71d5b54-5e85-4947-9c78-097fdffe44b5
This model is a fine-tuned version of EleutherAI/pythia-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.2954
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
21.8113 | 0.0005 | 1 | 5.2113 |
15.1235 | 0.0487 | 100 | 3.9548 |
14.7982 | 0.0974 | 200 | 3.8197 |
13.7443 | 0.1461 | 300 | 3.6183 |
15.704 | 0.1948 | 400 | 3.6420 |
13.8042 | 0.2435 | 500 | 3.4720 |
13.2007 | 0.2921 | 600 | 3.4392 |
13.0558 | 0.3408 | 700 | 3.4302 |
16.1464 | 0.3895 | 800 | 3.3322 |
14.4292 | 0.4382 | 900 | 3.2434 |
13.7315 | 0.4869 | 1000 | 3.2245 |
15.2213 | 0.5356 | 1100 | 3.2073 |
13.5114 | 0.5843 | 1200 | 3.2190 |
13.1945 | 0.6330 | 1300 | 3.1604 |
11.7011 | 0.6817 | 1400 | 3.0631 |
11.1894 | 0.7304 | 1500 | 3.0505 |
15.3082 | 0.7791 | 1600 | 3.0188 |
14.975 | 0.8278 | 1700 | 2.9847 |
11.4546 | 0.8764 | 1800 | 3.0346 |
14.6575 | 0.9251 | 1900 | 3.0584 |
12.4975 | 0.9738 | 2000 | 2.9857 |
12.8715 | 1.0226 | 2100 | 2.9691 |
12.3798 | 1.0713 | 2200 | 2.9477 |
12.1667 | 1.1200 | 2300 | 2.9389 |
13.4105 | 1.1687 | 2400 | 2.9246 |
10.8388 | 1.2174 | 2500 | 2.9197 |
11.7186 | 1.2661 | 2600 | 2.9452 |
9.4794 | 1.3148 | 2700 | 2.9325 |
11.2981 | 1.3635 | 2800 | 2.8855 |
11.3424 | 1.4122 | 2900 | 2.9009 |
13.1606 | 1.4609 | 3000 | 3.0128 |
11.5901 | 1.5096 | 3100 | 2.8463 |
13.8817 | 1.5582 | 3200 | 2.8352 |
10.3641 | 1.6069 | 3300 | 2.8067 |
11.7904 | 1.6556 | 3400 | 2.7993 |
13.4772 | 1.7043 | 3500 | 2.7733 |
13.1556 | 1.7530 | 3600 | 2.7185 |
14.1425 | 1.8017 | 3700 | 2.7170 |
12.8444 | 1.8504 | 3800 | 2.7320 |
14.8567 | 1.8991 | 3900 | 2.7395 |
10.6849 | 1.9478 | 4000 | 2.6872 |
11.225 | 1.9965 | 4100 | 2.6622 |
13.2007 | 2.0453 | 4200 | 2.6121 |
12.02 | 2.0940 | 4300 | 2.6490 |
11.8255 | 2.1427 | 4400 | 2.6439 |
8.9377 | 2.1914 | 4500 | 2.6369 |
13.2196 | 2.2400 | 4600 | 2.5585 |
9.1704 | 2.2887 | 4700 | 2.5552 |
14.5735 | 2.3374 | 4800 | 2.5070 |
9.7886 | 2.3861 | 4900 | 2.4726 |
9.4464 | 2.4348 | 5000 | 2.4289 |
8.929 | 2.4835 | 5100 | 2.4039 |
10.4566 | 2.5322 | 5200 | 2.3228 |
10.6264 | 2.5809 | 5300 | 2.3262 |
9.2416 | 2.6296 | 5400 | 2.2823 |
7.1439 | 2.6783 | 5500 | 2.3679 |
8.2611 | 2.7270 | 5600 | 2.3297 |
8.7267 | 2.7757 | 5700 | 2.2923 |
8.5845 | 2.8243 | 5800 | 2.2954 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for error577/d71d5b54-5e85-4947-9c78-097fdffe44b5
Base model
EleutherAI/pythia-160m