See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/SmolLM-135M
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f693d3ab51eecc27_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f693d3ab51eecc27_train_data.json
type:
field_input: span_labels
field_instruction: masked_text
field_output: unmasked_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 5
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/e8bb4bf7-6c39-44cf-980d-b666ffaf3211
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
peft_use_rslora: true
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
loraplus_lr_ratio: 16
lr_scheduler: constant_with_warmup
micro_batch_size: 4
mlflow_experiment_name: /tmp/f693d3ab51eecc27_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: ademamix_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
restore_best_weights: true
optim_target_modules:
- attn
- mlp
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 386bd2ee-883e-4683-a1e2-a0d14e23e014
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 386bd2ee-883e-4683-a1e2-a0d14e23e014
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
e8bb4bf7-6c39-44cf-980d-b666ffaf3211
This model is a fine-tuned version of unsloth/SmolLM-135M on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9601
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADEMAMIX_8BIT and the args are: No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.066 | 0.0001 | 1 | 2.1198 |
1.4404 | 0.0154 | 200 | 1.0935 |
1.1616 | 0.0309 | 400 | 1.0196 |
0.9961 | 0.0463 | 600 | 0.9976 |
0.9917 | 0.0618 | 800 | 0.9818 |
1.1452 | 0.0772 | 1000 | 0.9723 |
1.1945 | 0.0927 | 1200 | 0.9641 |
0.9992 | 0.1081 | 1400 | 0.9554 |
1.0653 | 0.1235 | 1600 | 0.9446 |
1.1229 | 0.1390 | 1800 | 0.9491 |
1.3471 | 0.1544 | 2000 | 0.9483 |
1.1403 | 0.1699 | 2200 | 0.9557 |
1.247 | 0.1853 | 2400 | 0.9642 |
1.4105 | 0.2008 | 2600 | 0.9601 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support