Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
auto_resume_from_checkpoints: true
base_model: MLP-KTLim/llama-3-Korean-Bllossom-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
  - 11a00e660a24742e_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/11a00e660a24742e_train_data.json
  type:
    field_input: schema
    field_instruction: question
    field_output: cypher
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/fbc6976a-2c63-4b02-ac57-9d6485244dc4
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/11a00e660a24742e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 128
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: c91f038a-3ced-453a-a510-5f8b367aab16
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c91f038a-3ced-453a-a510-5f8b367aab16
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

fbc6976a-2c63-4b02-ac57-9d6485244dc4

This model is a fine-tuned version of MLP-KTLim/llama-3-Korean-Bllossom-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
1.9934 0.0012 1 2.0208
0.2588 0.2309 200 0.2275
0.233 0.4619 400 0.1927
0.2045 0.6928 600 0.1782
0.2046 0.9238 800 0.1550
0.123 1.1547 1000 0.1590
0.0634 1.3857 1200 0.1254
0.1132 1.6166 1400 0.1299
0.0871 1.8476 1600 0.1193
0.0306 2.0785 1800 0.1250
0.0199 2.3095 2000 0.1275
0.028 2.5404 2200 0.1236

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/fbc6976a-2c63-4b02-ac57-9d6485244dc4

Adapter
(339)
this model