gpt2-medium-finetuned-qna-crypto

This model is a fine-tuned version of openai-community/gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2154

Google Collab

https://colab.research.google.com/drive/1N4xv2ifrkeY6Q0TPRPiGEvmSeq0xgA39?usp=sharing

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 5
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.3284 0.0578 10 0.3469
0.2827 0.1156 20 0.2725
0.2905 0.1734 30 0.2588
0.228 0.2312 40 0.2500
0.2449 0.2890 50 0.2439
0.2265 0.3468 60 0.2404
0.2537 0.4046 70 0.2358
0.2365 0.4624 80 0.2319
0.2362 0.5202 90 0.2288
0.2244 0.5780 100 0.2267
0.2168 0.6358 110 0.2232
0.214 0.6936 120 0.2204
0.2139 0.7514 130 0.2188
0.2264 0.8092 140 0.2174
0.2673 0.8671 150 0.2163
0.2223 0.9249 160 0.2157
0.2623 0.9827 170 0.2154

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
3
Safetensors
Model size
0.4B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for estradax/gpt2-medium-finetuned-qna-crypto

Finetuned
(130)
this model