See axolotl config
axolotl version: 0.8.0.dev0
# === Model Configuration ===
base_model: unsloth/Llama-3.3-70B-Instruct
load_in_8bit: false
load_in_4bit: true
# === Training Setup ===
num_epochs: 2
micro_batch_size: 2
gradient_accumulation_steps: 1
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# === Hyperparameter Configuration ===
optimizer: came_pytorch
learning_rate: 1e-5
lr_scheduler: rex
weight_decay: 0.01
warmup_steps: 0
cosine_min_lr_ratio: 0.1
# === LoRA Configuration ===
adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.25
lora_target_modules:
lora_target_linear: true
# === Data Configuration ===
chat_template: llama3
datasets:
- path: allura-org/inkmix-v2.1
type: chat_template
split: train
field_messages: conversations
message_field_role: from
message_field_content: value
dataset_prepared_path: last_run_prepared
# === Plugins ===
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
gradient_checkpointing: unsloth
gradient_checkpointing_kwargs:
use_reentrant: false
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
cut_cross_entropy: true
deepspeed: deepspeed_configs/zero3_bf16.json
# === Wandb Tracking ===
# wandb_project: [WANDB_PROJECT_NAME]
# wandb_entity: [WANDB_ENTITY]
# wandb_name: [WANDB_RUN_NAME]
# === MLflow Tracking ===
mlflow_tracking_uri: https://public-tracking.mlflow-e00zzfjq11ky6jcgtv.backbone-e00bgn6e63256prmhq.msp.eu-north1.nebius.cloud
mlflow_experiment_name: l3.3-70b-inkmixv2.1-qlora
# hf_mlflow_log_artifacts: true
# Disable logging artifacts to mlflow if model is big (it hangs):
hf_mlflow_log_artifacts: false
# === Checkpointing ===
saves_per_epoch: 1
save_total_limit: 2
# === Advanced Settings ===
output_dir: ./ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
ckpts
This model is a fine-tuned version of unsloth/Llama-3.3-70B-Instruct on the allura-org/inkmix-v2.1 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 2.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.50.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for estrogen/Bigger-Body-70b-ep2-adpt
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct
Finetuned
unsloth/Llama-3.3-70B-Instruct