ynat_model
This model is a fine-tuned version of monologg/koelectra-base-v3-discriminator on the klue-ynat dataset. It achieves the following results on the evaluation set:
- Loss: 0.4132
- Accuracy: 0.8612
- Precision: 0.8508
- Recall: 0.8725
- F1: 0.8611
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3895 | 1.0 | 714 | 0.4425 | 0.8479 | 0.8273 | 0.8738 | 0.8482 |
0.2946 | 2.0 | 1428 | 0.3996 | 0.8597 | 0.8486 | 0.8732 | 0.8598 |
0.2179 | 3.0 | 2142 | 0.4132 | 0.8612 | 0.8508 | 0.8725 | 0.8611 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Model tree for ezpzvv/ynat_model
Base model
monologg/koelectra-base-v3-discriminator