trainer
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3546
- Accuracy: 0.8807
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.032227
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 4096
- optimizer: Use OptimizerNames.SCHEDULE_FREE_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 1000
- training_steps: 1000000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 0 | 0 | 4.3903 | 0.0137 |
| No log | 0.0044 | 122 | 1.1251 | 0.6574 |
| No log | 0.0087 | 244 | 0.8266 | 0.7365 |
| No log | 0.0131 | 366 | 0.7493 | 0.7590 |
| No log | 0.0175 | 488 | 0.6913 | 0.7755 |
| 9.1782 | 0.0218 | 610 | 0.6348 | 0.7927 |
| 9.1782 | 0.0262 | 732 | 0.5897 | 0.8064 |
| 9.1782 | 0.0306 | 854 | 0.5569 | 0.8170 |
| 9.1782 | 0.0349 | 976 | 0.5262 | 0.8266 |
| 5.0917 | 0.0393 | 1098 | 0.4957 | 0.8360 |
| 5.0917 | 0.0437 | 1220 | 0.4761 | 0.8424 |
| 5.0917 | 0.0480 | 1342 | 0.4616 | 0.8464 |
| 5.0917 | 0.0524 | 1464 | 0.4479 | 0.8510 |
| 4.0398 | 0.0568 | 1586 | 0.4397 | 0.8536 |
| 4.0398 | 0.0611 | 1708 | 0.4293 | 0.8564 |
| 4.0398 | 0.0655 | 1830 | 0.4231 | 0.8592 |
| 4.0398 | 0.0699 | 1952 | 0.4139 | 0.8614 |
| 3.5268 | 0.0743 | 2074 | 0.4088 | 0.8635 |
| 3.5268 | 0.0786 | 2196 | 0.4035 | 0.8649 |
| 3.5268 | 0.0830 | 2318 | 0.4000 | 0.8666 |
| 3.5268 | 0.0874 | 2440 | 0.3950 | 0.8678 |
| 3.3084 | 0.0917 | 2562 | 0.3915 | 0.8688 |
| 3.3084 | 0.0961 | 2684 | 0.3866 | 0.8705 |
| 3.3084 | 0.1005 | 2806 | 0.3843 | 0.8712 |
| 3.3084 | 0.1048 | 2928 | 0.3804 | 0.8726 |
| 3.1769 | 0.1092 | 3050 | 0.3776 | 0.8733 |
| 3.1769 | 0.1136 | 3172 | 0.3729 | 0.8749 |
| 3.1769 | 0.1179 | 3294 | 0.3723 | 0.8751 |
| 3.1769 | 0.1223 | 3416 | 0.3698 | 0.8759 |
| 3.0785 | 0.1267 | 3538 | 0.3659 | 0.8772 |
| 3.0785 | 0.1310 | 3660 | 0.3644 | 0.8775 |
| 3.0785 | 0.1354 | 3782 | 0.3599 | 0.8788 |
| 3.0785 | 0.1398 | 3904 | 0.3584 | 0.8794 |
| 2.9831 | 0.1441 | 4026 | 0.3567 | 0.8800 |
| 2.9831 | 0.1485 | 4148 | 0.3528 | 0.8817 |
| 2.9831 | 0.1529 | 4270 | 0.3535 | 0.8811 |
| 2.9831 | 0.1572 | 4392 | 0.3541 | 0.8809 |
Framework versions
- Transformers 4.52.2
- Pytorch 2.8.0.dev20250521+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 21