SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 128 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("faodl/model_g20_multilabel")
# Run inference
preds = model("Training infrastructure will be adapted to accommodate
new programmes.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 48.9866 | 1181 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 50
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2348 | - |
0.0119 | 50 | 0.1747 | - |
0.0237 | 100 | 0.153 | - |
0.0356 | 150 | 0.1314 | - |
0.0475 | 200 | 0.1263 | - |
0.0593 | 250 | 0.1168 | - |
0.0712 | 300 | 0.116 | - |
0.0831 | 350 | 0.098 | - |
0.0949 | 400 | 0.1085 | - |
0.1068 | 450 | 0.0975 | - |
0.1187 | 500 | 0.094 | - |
0.1305 | 550 | 0.082 | - |
0.1424 | 600 | 0.0856 | - |
0.1543 | 650 | 0.0838 | - |
0.1662 | 700 | 0.0762 | - |
0.1780 | 750 | 0.0722 | - |
0.1899 | 800 | 0.0722 | - |
0.2018 | 850 | 0.0634 | - |
0.2136 | 900 | 0.0584 | - |
0.2255 | 950 | 0.0664 | - |
0.2374 | 1000 | 0.0688 | - |
0.2492 | 1050 | 0.0629 | - |
0.2611 | 1100 | 0.0579 | - |
0.2730 | 1150 | 0.0652 | - |
0.2848 | 1200 | 0.0573 | - |
0.2967 | 1250 | 0.0584 | - |
0.3086 | 1300 | 0.0558 | - |
0.3204 | 1350 | 0.0586 | - |
0.3323 | 1400 | 0.0574 | - |
0.3442 | 1450 | 0.0444 | - |
0.3560 | 1500 | 0.0462 | - |
0.3679 | 1550 | 0.0488 | - |
0.3798 | 1600 | 0.0505 | - |
0.3916 | 1650 | 0.0529 | - |
0.4035 | 1700 | 0.0487 | - |
0.4154 | 1750 | 0.0459 | - |
0.4272 | 1800 | 0.0531 | - |
0.4391 | 1850 | 0.0448 | - |
0.4510 | 1900 | 0.0382 | - |
0.4629 | 1950 | 0.0457 | - |
0.4747 | 2000 | 0.0493 | - |
0.4866 | 2050 | 0.0488 | - |
0.4985 | 2100 | 0.049 | - |
0.5103 | 2150 | 0.0495 | - |
0.5222 | 2200 | 0.0402 | - |
0.5341 | 2250 | 0.0493 | - |
0.5459 | 2300 | 0.0496 | - |
0.5578 | 2350 | 0.0438 | - |
0.5697 | 2400 | 0.0361 | - |
0.5815 | 2450 | 0.0428 | - |
0.5934 | 2500 | 0.0419 | - |
0.6053 | 2550 | 0.0416 | - |
0.6171 | 2600 | 0.0338 | - |
0.6290 | 2650 | 0.0397 | - |
0.6409 | 2700 | 0.0385 | - |
0.6527 | 2750 | 0.0285 | - |
0.6646 | 2800 | 0.0461 | - |
0.6765 | 2850 | 0.0341 | - |
0.6883 | 2900 | 0.0379 | - |
0.7002 | 2950 | 0.0435 | - |
0.7121 | 3000 | 0.0341 | - |
0.7239 | 3050 | 0.0395 | - |
0.7358 | 3100 | 0.0424 | - |
0.7477 | 3150 | 0.0415 | - |
0.7596 | 3200 | 0.0422 | - |
0.7714 | 3250 | 0.0402 | - |
0.7833 | 3300 | 0.0309 | - |
0.7952 | 3350 | 0.0379 | - |
0.8070 | 3400 | 0.039 | - |
0.8189 | 3450 | 0.0427 | - |
0.8308 | 3500 | 0.0331 | - |
0.8426 | 3550 | 0.0457 | - |
0.8545 | 3600 | 0.0306 | - |
0.8664 | 3650 | 0.034 | - |
0.8782 | 3700 | 0.0354 | - |
0.8901 | 3750 | 0.0393 | - |
0.9020 | 3800 | 0.036 | - |
0.9138 | 3850 | 0.0339 | - |
0.9257 | 3900 | 0.0332 | - |
0.9376 | 3950 | 0.0274 | - |
0.9494 | 4000 | 0.0372 | - |
0.9613 | 4050 | 0.0319 | - |
0.9732 | 4100 | 0.0339 | - |
0.9850 | 4150 | 0.0349 | - |
0.9969 | 4200 | 0.0383 | - |
Framework Versions
- Python: 3.11.13
- SetFit: 1.1.2
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support